Surveillance du bruit – Brussels Airport

Rapport annuel 2007

Evaluation du bruit d'immission engendré par le trafic aérien de Brussels Airport en 2007 sur base de mesures de bruit des stations de mesures de bruit gérées par 'Brussels Airport', 'Bruxelles Environnement-IBGE' et le département 'Leefmilieu, Natuur en Energie' (LNE) de l'administration Flamande, en collaboration avec 'Belgocontrol' et l'Administration Fédérale (SPF) 'Mobilité et Transport'.

CONTENU

- 1. Introduction
- 2. Généralités
 - 2.1. Stations de mesure
 - 2.2. Analyse et traitement
 - 2.3. Taux d'activité et taux de corrélation
 - 2.4. Conventions
 - 2.5. Grandeurs d'appréciation
- 3. Modifications des procédures de vol, de l'utilisation des pistes et des routes en 2007
- 4. Analyse des données de vols
 - 4.1. Nombre de mouvements
 - 4.2. L'utilisation des pistes
 - 4.2.1. Evolution annuelle de l'utilisation des pistes en 2004-2007
 - 4.2.2. Evolution mensuelle de l'utilisation des pistes en 2007
 - 4.3. Les procédures de vol
 - 4.4. Les types d'appareils
- 5. Résumé des résultats des mesures
 - 5.1. Résumé et comparaison avec des résultats des calculs en INM
 - 5.2. Evolution des grandeurs acoustiques
 - 5.3. Comparaison des résultats de mesures des régions
- 6. Conclusion

ANNEXES

- A Analyse des données de trafic aérien (source: CDB Brussels Airport)
 - A.1 Analyse de l'utilisation des pistes
 - A.2 Répartition des routes de départs ou SID's
 - A.3 Apercu des types d'avions
- B Statistiques des vols au décollage (source: Belgocontrol AMS)
- C Résultats détaillés des mesures par NMT
- D Distributions L_{Amax} par NMT

1. Introduction

Les accords de principe des 22 février et 16 juillet 2002, conclus entre le Gouvernement fédéral, le Gouvernement flamand et le Gouvernement de la Région de Bruxelles-Capitale relatifs à une politique cohérente en matière de nuisances sonores nocturnes concernant l'aéroport Brussels Airport, instaurent une Commission d'Avis, définissent sa composition et en fixent les missions.

Dès sa création, et afin de mener à bien les missions qui lui ont été confiées, cette Commission d'Avis a mis en place un système de collecte, de mise en commun et de centralisation tant des données trafic gérées par Belgocontrol que des données acoustiques issues des réseaux de mesure de bruit gérés par (The) Brussels Airport (Company), par LNE et par Bruxelles Environnement – IBGE.

Ainsi, outre la prise en charge des diverses missions évoluant au gré des demandes formulées par le Comité de Concertation (des ministres fédéraux et régionaux), cette Commission d'Avis s'est employée à produire des rapports annuels visant à dresser un constat acoustique de la situation nocturne sur base de l'ensemble des données trafic et acoustiques disponibles. Le dernier rapport annuel porte sur l'année 2004.

A défaut de nouveaux mandats, les travaux de la Commission d'Avis ont été suspendus. La dernière réunion s'est ainsi tenue en juin 2005. Toutefois, la mise en commun et le traitement des données trafic et acoustiques n'ont jusqu'a présent pas été interrompus.

Estimant opportun d'assurer une certaine continuité des travaux de mise en commun et d'analyse des données acoustiques et trafic, les membres de la Commission d'Avis chargés de la gestion des réseaux de mesure de bruit et des bases de données du trafic aérien ont pris l'initiative de constituer un groupe de travail technique, œuvrant sur base volontaire et en toute indépendance. N'étant lié à aucun mandat, ce groupe de travail s'est défini un cadre de travail, visant notamment à prendre en compte les données diurnes et nocturnes, et s'est fixé comme objectifs :

- d'assurer la collecte et la mise en commun des données trafic et des données acoustiques des différents réseaux de mesure de bruit ;
- d'établir et d'analyser les corrélations entre les données acoustiques et trafic ;
- de produire et commenter les résultats des traitements ;
- de globaliser l'ensemble des constats dans un rapport annuel ;
- de mettre le rapport annuel à disposition via le site WEB de chaque institution.

Le présent rapport constitue le troisième document – après les rapport 2005 et 2006 - élaboré dans ce contexte et porte sur l'ensemble des données collectées durant **l'année 2007**.

2. Généralités

2.1. Stations de mesure

Les stations de mesures (fixes, semi-mobiles et mobiles) actives en 2007, sont reprises sur la carte suivante (figure 1). Les données détaillées concernant ces stations sont rassemblées dans le tableau général (tableau 1).

Toutes les stations figurant sur la carte n'ont pas fait l'objet d'un traitement dans ce rapport.

Les stations NMT 01 (Steenokkerzeel), NMT 3-2 (Humelgem-Airside), NMT 15, 15-2 et 15-3 (Zaventem) et NMT 23 (Steenokkerzeel) sont situées sur les terrains de l'aéroport et/ou dans les environs immédiats des pistes et des installations aéroportuaires. Les données d'immission des événements corrélés contiennent donc aussi bien la contribution du bruit de fond que des survols ou une combinaison des deux. De plus, la mise en concordance avec des mouvements d'avions particuliers n'est pas toujours fiable. Pour ces raisons, les données de ces stations de mesure ont été considérées comme moins pertinentes pour l'analyse des données d'immission des mouvements spécifiques (atterrissages ou décollages) et n'ont donc pas été reprises dans ce rapport.

Pour des raisons purement techniques, seules les données de deux stations de mesures de la Région bruxelloise (NMT 30 en 31) ont été traitées dans ce rapport. En effet, les données des autres stations fixes de la Région bruxelloise (NMT 34-2, 36, 38, 39-2, 51-1, 51-2 en 52) ont un format incompatible avec celui des stations de mesures de Brussels Airport et du département « Leefmilieu, Natuur en Energie » (LNE) de l'administration flamande.

Dans le courant de l'année 2007, deux stations de mesure; gérées par l'exploitant de l'aéroport, NMT 16 et NMT 26, ont été adaptées pour des raisons techniques et opérationnelles. La station NMT 16 de Veltem a été déplacée d'une distance relativement limitée (< 10m). En ce qui concerne la station NMT 26 de Bruxelles, il s'agit uniquement d'une adaptation de l'appareillage de mesure (transformation d'une station « off-line » vers une station « on-line »).

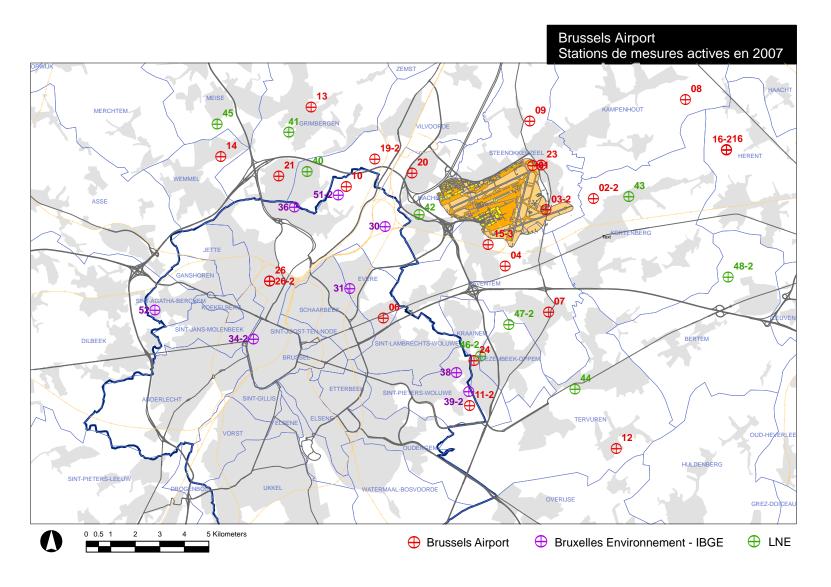


Figure 1 : représentation des stations de mesure actives en 2007

Tablea	u 1 : Liste des station	ns de mesures actives en 2007						Jaarra	1
C identification NMT	localisation	adresse	coordinées (X) (Lambert72)	coordinées (Y) (Lambert 72)	exploitant	type (*)	début de la période d'observation	fin de la période d'observation	
	STEENOKKERZEEL	Knooppunt banen 25R en 20 Airside	159503	178265	Brussels Airport	F	1991		(1)
02-2		DVOR BUB aan de Kortenbergsesteenweg	161972	176923	Brussels Airport	F	2006.11.24		
		Airside, poort aan P5	160037	176459	Brussels Airport	F	2004.06.22		(1)
	NOSSEGEM	Middle marker baan 02 achter de steenfabriek	158373	174167	Brussels Airport	F	1991		
	EVERE	Leuvensteenweg 970, Buurtspoorwegen	153406	172050	Brussels Airport	F	1991		
	STERREBEEK	Kerkdries 22, Vrije gesubsideerde Basisschool	160144	172294	Brussels Airport	F	1991		
	KAMPENHOUT	Outer marker baan 25R aan de Paddezijpstraat	165724	180956	Brussels Airport	F	1991		
09	PERK	Domein van Perk N.V. Kasteel	159375	180081	Brussels Airport	F	1991		
	N.O-HEEMBEEK	Bruynstraat, Militair Hospitaal	151890	177402	Brussels Airport	F	1991		
	WOLUWE-ST. PIERRE	Outer marker baan 02, Avenue des Dames Blanches	156919	168469	Brussels Airport	F	2006.06.07		
	DUISBURG	Merenstraat, Watertorens, Vlaamse Watermaatschap.	162902	166732	Brussels Airport	F	1991		
13	GRIMBERGEN	18, Rijkshoekstraat	150465	180648	Brussels Airport	F	1991		
14	WEMMEL	Zijpstraat 14-16, Hoger Rijkstechnisch Instituut voor TO	146778	178630	Brussels Airport	F	1991		
15-3	ZAVENTEM	Steenokkerzeelstraat 56, Zaventem	157684	175036	Brussels Airport	F	2006.12.12		(1)
16	VELTEM	Outermarker 25L aan de Haachtstraat	167396	178908	Brussels Airport	F	1991	2007.05.25	` '
16-2	VELTEM	Outermarker 25L aan de Haachtstraat	167392	178901	Brussels Airport	F	2007.05.25		
19-2	VILVOORDE	Paolapaviljoen, Domein Drie Fonteinen	153056	178523	Brussels Airport	SM	2005.07.01		
	MACHELEN	14, G. Ferréstraat	154572	177959	Brussels Airport	SM	2003.01.11		
21	STROMBEEK-BEVER	31, Sint-Amandsplein	149141	177824	Brussels Airport	SM	2003.01.09		
21 23 24	STEENOKKERZEEL	"Zandbak" tussen Vanfrachenlaan en Nieuwstraat	159838	178288	Brussels Airport	SM	2004.08.31		(1)
24	KRAAINEM	Politiecommissariaat, F. Kinnenstraat - Kraainem	157101	170320	Brussels Airport	SM	2004.06.02		` ′
26	BRUXELLES	Ecole "Spes", 173, Rue de Molenbeek - 1020 Bruxelles (Laeken)	148770	173557	Brussels Airport	SM	2004.03.05	2007.05.23	
	BRUXELLES	Ecole "Spes", 173, Rue de Molenbeek - 1020 Bruxelles (Laeken)	148770	173557	Brussels Airport	SM	2007.05.23		
	HAREN (BXL1)	Rue Cortenbach - 1130 Bruxelles (Haren)	153480	175780	BIM / IBGE	F	1997.04.01		
31	EVERE (EVE1)	Rue J-B Mosselmans - 1140 Evere	152038	173253	BIM / IBGE	ľ _E	1996.01.01		
	BRUXELLES	47, Rue de Houblon - 1000 Bruxelles	148109	171195	BIM / IBGE	F	2003.11.05		(2)
36	LAEKEN	28, Av. De la Wannecourter - 1020 Bruxelles (Laeken)	149779	176567	BIM / IBGE	l _E	2003.08.01		(2)
		38, Av. des Cyclistes - 1150 Woluwé-Saint-Pierre	156383	169831	BIM / IBGE	F	2003.12.04		(2)
		Corniche Verte - 1150 Woluwé-Saint-Pierre	156890	169055	BIM / IBGE	F.	2004.05.05		(2) (2) (2)
40	KONINGSLO	189A, Streekbaan (politiemeldpost), Vilvoorde	150301	178013	LNE	l'e	2001.10.05		(2)
41	GRIMBERGEN	Domein 'Ter Wilgen', Brusselsesteenweg - Grimbergen	149551	179614	LNE	ľ-	2002.09.27		
42	DIEGEM	40, Zaventemsesteenweg, Machelen	154859	176268	LNE	SM	2002.09.27		
43	ERPS-KWERPS	Dekenijstraat (plantsoen nabij EHBO-lokaal), Kortenberg	163409	177005	LNE	SM	2003.01.29		
43 44	TERVUREN	21, Leuvensesteenweg (site 'Groenplan')	161216	169147	LNE	F	2003.02.07		
44 45	MEISE	Nationale Plantentuin van België (Domein van Bouchout)	146631	179950	LNE	SM	2002.04.04		
45 46-2	-	,				-			
	WEZEMBEEK-OPPEM	Ecole St. Georges, F. Kinnenstraat	157375	170504	LNE	SM	2005.10.18		
		50, Rue du Cimitière	158520	171772	LNE LNE	SM	2004.05.28		1
		Meilaarsveld (radarstation Belgocontrol)	167464	173712		SM	2006.01.04		(0)
		347, Trassersweg (Nospilifs) - 1120 Bruxelles (Neder-Over-Heembeek) 25, Rue Mathieu Pauwels - 1082 Berchem-Sainte-Agathe	151568 144092	177063 172370	BIM / IBGE BIM / IBGE	F	2005.01.29		(2) (2)
JZ	DENOREW-STEAGATH	425, Rue Maurieu Fauweis - 1002 Derchent-Sainte-Againe	144092	1/23/0	DIIVI / IDGE	Jr.	2003.11.26		(2)

⁽¹⁾ station de mesure située sur ou à proximité du terrain de l'aéroport (combinaison des bruits des avions au sol et en survol)
(2) station de mesure non-traîtée

(*) station fixe station mobile station semi-mobile

Tableau 1: Liste des stations de mesure actives en 2007

Les résultats repris dans ce rapport sont basés sur les événements acoustiques corrélés aux vols, collectés par les réseaux de mesures de Brussels Airport, Bruxelles Environnement-IBGE et LNE. Il s'agit d'événements acoustiques qui répondent aux limites de détections et qui sont ensuite corrélés à un vol spécifique via le système de corrélation automatique géré par Brussels Airport.

Les limites de détection des événements enregistrés par les stations de LNE et de Brussels Airport sont assez strictes. Un événement est pris en compte si un seuil prédéfini est dépassé suffisamment longtemps (10 secondes). Les seuils ne sont pas identiques pour toutes les stations. Le seuil des stations de mesure de LNE est en général 5 dB inférieur à celui des stations de mesures de Brussels Airport, ce qui a un impact important sur le nombre d'événements acoustiques enregistrés.

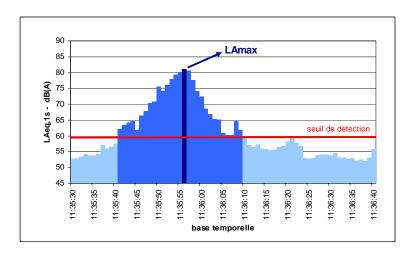


Figure 2 : enregistrement d'événements (exemple)

Les stations de mesures en Région bruxelloise, gérées par Bruxelles Environnement-IBGE n'ont pas recours à un seuil prédéfini. La détection d'évènements ne s'opère pas au niveau de la station de mesure mais sur base d'une analyse et d'un traitement du signal relevé en continu, par lequel les événements acoustiques sont isolés et mis en corrélation avec un vol spécifique sur base des données du trafic aérien. Les données transmises par la Région bruxelloise sont donc des événements acoustiques qui ont fait l'objet d'un traitement préliminaire et qui peuvent être assimilés à des vols spécifiques.

La base de données des stations de mesures LNE et de Bruxelles Environnement-IBGE sont envoyées mensuellement par les régions dans un format de données compatible. Ces données sont introduites par Brussels Airport dans le "Noise Monitoring Systeem" (NMS) de l'aéroport afin d'être corrélées avec les données de vol et traces radar disponibles.

La corrélation d'un événement acoustique spécifique avec un mouvement d'avion est faite sur base d'un critère de distance. Un vol peut seulement être corrélé avec un événement acoustique dans le cas où la distance entre le plot radar correspondant moment du niveau maximum de l'événement et la position de la station est plus petite qu'une valeur prédéfinie. Cette distance qui défini une demisphère autour de la station de mesure est appelée « rayon de corrélation » et est propre à chaque station de mesure.

1

La corrélation effectuée n'est pas absolue. Il est donc possible que des événements définis soient attribués à tort à des mouvements d'avions et inversement. Afin de minimiser le risque de corréler à

Depuis 2004, différentes améliorations ont été appliquées parmi lesquelles la disponibilité des traces radar jusqu'à une altitude de 5000 pieds au lieu de 4000 pieds. Grâce à l'adaptation en 2005 de l'algorithme de corrélation et, pour certaines stations, de l'augmentation du rayon de corrélation, la corrélation a été améliorée pour certains points de mesure.

tort un événement sonore causé par une autre source qu'un passage d'avion, seuls les événements sonores de maximum 75 secondes ont été retenus.

La méthode appliquée est la même que celle appliquée aux données de l'année 2005 en 2006 ayant fait l'objet des rapports précédents. Les données corrélées ont ensuite été traitées, analysées et consignées dans un rapport par le département LNE.

2.3. Taux d'activité et taux de corrélation

Le taux d'activité mentionné dans ce rapport représente le pourcentage de l'année durant lequel les stations étaient active pendant la période d'observation considérée. Il représente la fraction de l'année durant laquelle la station était en fonctionnement et complètement opérationnelle. Des interruptions de courte ou de longue durée dans l'acquisition des données peuvent éventuellement être la conséquence de pannes techniques, d'interventions de service, etc ... Le taux d'activité a été pris en compte dans la détermination des résultats moyens annuels.

Le tableau 2 donne un aperçu général du taux d'activité par station de mesure (NMT). Le tableau contient d'autres données telles que le nombre total d'événements enregistrés et le nombre total d'événements corrélés. Le rapport des deux donne le pourcentage de corrélation. Ce pourcentage de corrélation peut varier fortement d'un point de mesure à l'autre et est dépendant de divers facteurs.

Les facteurs en rapport avec l'efficacité globale de l'algorithme de corrélation tels que le rayon de corrélation adapté, la disponibilité des traces radar pour la corrélation automatique des vols, ... sont évidemment importants. Par ailleurs, le taux de corrélation dépend également du nombre d'événements enregistrés.

Pour les stations de LNE et de Brussels Airport, un paramètre de mesure dont l'influence sur le nombre total d'événements enregistrés est importante est le seuil de détection préprogrammé². Plus bas est ce seuil de détection, plus élevé sera le nombre d'événements enregistrés. La présence d'autres sources de bruit que le bruit des avions (bruits parasites), la situation géographique par rapport aux trajectoires empruntées par les avions, ... ont, en combinaison avec le seuil de détection, un impact important sur le nombre total d'événements enregistrés et par conséquent sur le taux de corrélation.

² Pour les deux réseaux, le seuil de détection est combiné avec une durée minimale de dépassement de 10 secondes (condition événementielle) et une durée minimale de franchissement de 5 secondes (détermination de la fin d'un événement)

Tableau 2 : nive	eau d'activit	é, niveau de seuil et po	urce	ntage de co	rrélation (2	24h)		
EXPLOITANT	NMT	LOCALISATION		Taux d'activité [%]	Niveau de seuil [dB(A)]	Le nombre total des événements sonores repérés	Le nombre des événements correlés aux passages d'avion	Pourcentage de corrélation [%]
Brussels Airport	1 2-2 3-2 4 6 7 8 9 10 11-2 12 13 14 15-3 16/16-2 19-2 20 21 23 24	STEENOKKERZEEL KORTENBERG HUMELGEM -Airside NOSSEGEM EVERE STERREBEEK KAMPENHOUT PERK N.O-HEEMBEEK WOLUWE-ST. PIERRE DUISBURG GRIMBERGEN WEMMEL ZAVENTEM VELTEM VILVOORDE MACHELEN STROMBEEK-BEVER STEENOKKERZEEL KRAAINEM	(*) (*)	98.0% 99.8% 99.9% 99.8% 99.4% 97.2% 99.1% 99.3% 99.7% 99.8% 99.6% 99.3% 99.1% 99.9% 97.5% 100.0% 99.9% 99.1%	70 65 65 65 65 65 65 65 65 65 65 65 65 65	- 94106 - 30138 23795 7260 28711 6860 33436 19864 4557 3324 8222 - 65415 14647 9922 16077 - 29266	- 85922 - 23811 20494 5760 27171 2423 27043 17843 2265 1509 5525 - 62267 13011 8983 14364 - 27318	- 91.3% - 79.0% 86.1% 79.3% 94.6% 35.3% 80.9% 89.8% 49.7% 45.4% 67.2% - 95.2% 88.8% 90.5% 89.3% - 93.3%
	26 / 26-2	BRUXELLES		99.5%	65	9671	2279	23.6%
BIM / IBGE	30 31	HAREN EVERE		99.9% 99.9%	(**) (**)	83137 42098	80317 40977	96.6% 97.3%
LNE	40 41 42 43 44 45 46-2 47-2 48-2	KONINGSLO GRIMBERGEN DIEGEM ERPS-KWERPS TERVUREN MEISE WEZEMBEEK-OPPEM WEZEMBEEK-OPPEM BERTEM		99.9% 99.9% 99.5% 99.7% 99.6% 99.2% 99.0% 99.8%	60 60 70/65 (***) 60 60 60 60 60	37271 26487 76562 92033 18200 10567 54441 30959 11696	27920 19176 75097 85719 10187 6275 45121 23378 6422	74.9% 72.4% 98.1% 93.1% 56.0% 59.4% 82.9% 75.5% 54.9%

^(*) NMT située sur ou à proximité du terrain de l'aéroport (combinaison des bruits des avions au sol et en survol)

Etant donné que le déplacement de la station NMT 16 dans le courant de l'année 2007 était limité, les données des deux points de mesure NMT 16 et NMT 16-2 ont été évalués conjointement et, dans un souci de simplicité, ont été présenté comme une seule station de mesure. La même approche a été appliquée à la station NMT 26 à Bruxelles.

^(**) non-appliquable

^(***) le niveau de seuil / détection est différente pour la période de jour (70 dB(A)) et la période de nuit (65 dB(A))

2.4. Conventions

Toutes les heures mentionnées dans ce rapport sont exprimées en heure locale (LT).

La délimitation des périodes mensuelles définies et appliquées par les autorités aéroportuaires (BIAC et Belgocontrol) ont été utilisées lors de l'élaboration des moyennes mensuelles reprises dans ce rapport. Il s'ensuit que la période nocturne 00h-07h est allouée au jour qui précède. Sur cette base, la période mensuelle (nocturne) est délimitée comme suit: la première nuit du mois commence à 23h le 1e jour du mois concerné et la dernière nuit se termine à 07h le matin du 1e jour du mois suivant 3.

Ce principe est illustré dans la figure 3 pour un mois arbitrairement choisi (septembre).

Figure 3 : Définition des périodes nocturnes mensuelles (illustration : septembre)

Les données analysées dans ce rapport pour 2007 concernent la période du 01 janvier 2007 07 h au 01 janvier 2008 07 h.

2.5. Grandeurs d'appréciation

Les grandeurs caractéristiques prises en compte et évaluées dans ce rapport sont d'une part le niveau de pression acoustique équivalent (symbole : \mathbf{L}_{Aeq}) et d'autre part la fréquence de dépassement d'un niveau de pression acoustique maximum \mathbf{L}_{Amax} X (symbole : $\mathbf{nxL}_{Amax > x}$).

Niveau de pression acoustique équivalent (symbole : L_{Aeq})

Le bruit des avions est un bruit très fluctuant qui se compose d'une succession d'événements acoustiques individuels. Pour pouvoir rendre compte de la contribution sonore de bruits fluctuants, il est d'usage de moyenner le niveau d'énergie acoustique sur une période d'observation déterminée T.

Pour tenir compte de la sensibilité fréquentielle de l'ouïe humaine, une pondération fréquentielle est ordinairement appliquée aux niveaux mesurés. La pondération la plus utilisée est la pondération A (indice : A). La pondération A est acceptée internationalement pour qualifier la contribution sonore causée par le bruit des avions.

³ Pour une autre période de 24h applicable (période diurne: 06-23h00 / période nocturne: 23-06h), la période mensuelle a été délimité de la même façon avec comme seule adaptation que l'heure de fin ou de début est 06h au lieu de 07h. Ceci est surtout pertinent dans ce rapport pour des données concernant les statistiques de vols qui sont basées sur les périodes « opérationnelles » appliquées par les autorités aéroportuaires.

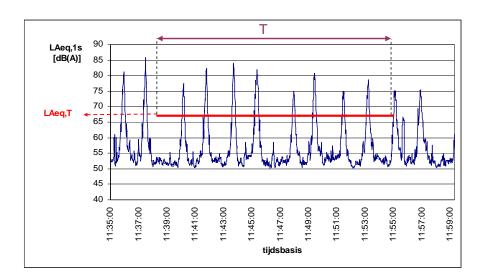


Figure 4 : présentation graphique du L_{Aeq.T}

Le niveau de pression acoustique équivalent pondéré A (symbole: L_{Aeq,T}) est le niveau de pression acoustique d'un bruit constant qui sur la même période contient exactement la même énergie que le bruit fluctuant original. C'est une « moyenne énergétique » du niveau de pression acoustique sur une période T et doit être considéré comme le niveau de pression acoustique constant dont l'énergie est équivalente à la contribution de tous les événements acoustiques durant la période d'observation T considérée.

La période d'observation T comprend le plus souvent une période d'évaluation précise (jour, soir, nuit) délimitées conformément à ce qui est imposé dans des règlementations existantes (plus particulièrement conditions de permis, directive européenne 2002/49/CE,...)

Par exemple : le niveau de pression acoustique équivalent, particulier pour les périodes diurnes et nocturnes, et les grandeurs moyennes annuelles fixées dans le cadre de la directive européenne « bruit ambiant » 2002/49/CE L_{day}, L_{evening} en L_{night} pour, respectivement les périodes de jour, soirée et nuit (07-19h, 19-23h, 23-07h).

Les niveaux de pression acoustique équivalents pour des périodes spécifiques d'évaluation peuvent être combinés en une « combinaison de niveaux de pression acoustique équivalents ». Pour rendre compte du caractère plus dérangeant des événements qui surviennent durant des périodes plus sensibles, ceux-ci peuvent être « pénalisés » en pondérant les niveaux de pression acoustique équivalents. Par exemple les indicateurs suivants:

L_{den}: Le niveau de pression acoustique équivalent pondéré A, tel que défini dans la directive européenne « bruit ambiant » 2002/49/CE, concerne une année entière, avec une pénalité 5 dB (A) pour les niveaux durant la période de soirée (19-23h) et de 10 dB(A) pour les niveaux durant la période nocturne (23-07h)., suivant la formule ci-dessous

$$L_{den} = 10 \log \frac{1}{24} \left(12x10^{\frac{L_{day}}{10}} + 4x10^{\frac{(L_{evening} + 5)}{10}} + 8x10^{\frac{(L_{night} + 10)}{10}} \right)$$

Le niveau « jour-nuit » est un niveau de pression acoustique équivalent pondéré A dans lequel les niveaux nocturne entre 23 h et 06 h sont augmentés de 10 dB(A). Ce paramètre est basé sur une division de la journée « opérationnelle », comme celle appliquée à l'aéroport.

• Fréquences de dépassement

L'impact d'un événement acoustique isolé peut être caractérisé par le niveau de pression acoustique maximal (symbole : L_{Amax}). Les techniques de mesure appliquées aux stations autours de l'aéroport permettent l'enregistrement d'un niveau de pression acoustique chaque seconde (symbole : $L_{Aeq,1s,max}$), comme représenté à la figure 2.

D'après les valeurs mesurées des L_{Amax} de tous les événement corrélés, il est possible de déterminer statistiquement combien de fois une valeur précise X est dépassée en moyenne par jour $(nxL_{Amax}>X)$

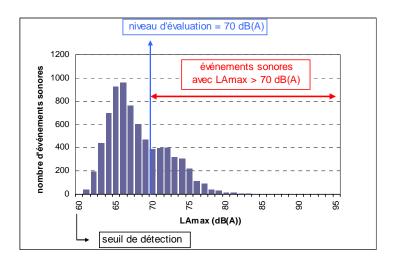


Figure 5 : Exemple d'une distribution des L_{Amax} en classes de 1 dB(A)

La figure 5 montre un exemple de distribution des L_{Amax} des événements corrélés aux passages d'avions par classe de 1 dB(A). L'exemple montre une distribution typique pour une station de mesure avec valeurs mesurées disponibles pour des L_{Amax} supérieurs au seuil de détection prédéfini de 60 dB(A). L'**Annexe D** montre des distributions détaillées en fonction du niveau L_{Amax} pour les stations faisant l'objet de ce rapport.

La fréquence moyenne de dépassement pour une valeur égale à 70 dB(A) (ou niveau d'évaluation) est représenté par le symbole $nxL_{Amax}>70^{-4}$ et est basée sur une évaluation du nombre moyen d'événements par jour dont le $L_{Amax}>70$ dB(A). Les valeurs $nxL_{Amax}>70$ peuvent également être déduites des distributions cumulées du nombre moyen d'événements acoustiques corrélés par jour, comme représenté à la figure 6.

-

⁴Dans la littérature, le symbole NA70 ('Number Above 70') est souvent utilisé. Les courbes iso ou courbes qui relient les points ayant une même fréquence de dépassement supérieure à 70 dB(A), ont été représenté par le symbole 'freq.70 dans le rapport présentant les contours annuels de bruit pour l'aéroport Brussels Airport.

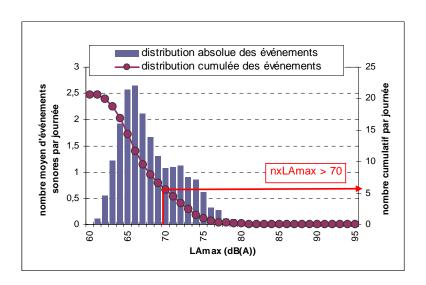


Figure 6 : illustration de l'indicateur nxL_{Amax}>70, déduit de la distribution cumulée

Ce rapport présente les résultats moyens annuels de l'indicateur nxL_{Amax} > 70 pour la période diurne (07-23h) et la période nocturne (23-07h).

3. Modifications des procédures de vol, de l'utilisation des pistes et des routes en 2007

L'utilisation préférentielle des pistes pour les mouvements provenant de et vers l'aéroport est défini dans l' « Aeronautical Information Publication » (AIP). Depuis l'introduction du plan de dispersion en 2004, adapté en 2005 faisant suite à différents jugements, le schéma de l'utilisation préférentielle des pistes n'a pas changé. L'utilisation préférentielle des pistes selon les AIP, en concordance avec le « plan de dispersion », est donnée par le tableau ci-dessous (tableau 3). L'orientation et la désignation des pistes de l'aéroport est donné à la figure 7.

Preferentieel b	aangebruik	Période de jour		Période de nuit	Période de nuit		
(tijdsaanduidin	g in lokale tijd)	06:00 tot 16:59	17:00 tot 22:59	22:59 tot 02:59	03:00 tot 05:59		
Ma, 06:00 -	Décollage	25R		20	07R / 07L ⁽¹⁾		
Di, 05:59	Atterrissage	25R/25L		25R/25L	20		
Di, 06:00 -	Décollage	25R		25R / 20	•		
Wo, 05:59	Atterrissage	25R/25L		25L /25R			
Wo, 06:00 -	Décollage	25R		25R 07R / 07L ⁽¹⁾			
Do, 05:59 Atterrissage		25R/25L		25R / 25L	20		
Do, 06:00 -	Décollage	25R	25R		25R / 20		
Vrij, 05:59	Atterrissage	25R/25L		25R / 25L			
Vrij, 06:00 -	Décollage	25R		20	07R / 07L ⁽¹⁾		
Zat, 05:59	Atterrissage	25R / 25L		25R / 25L	20		
Zat, 06:00 -	Décollage	25R		25L			
Zon, 05:59	Atterrissage	25R/25L		25R	25R		
Zon, 06:00 -	Décollage	20	25R	25R / 20			
Ma, 05:59	Atterrissage	25R/25L		25R/25L			

Tableau 3 : utilisation préférentielle des pistes (AIP 20/12/2007)

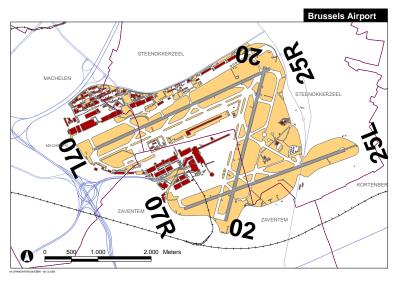


Figure 7 : La configuration des pistes à l'aéroport Brussels Airport

La configuration des pistes publiée dans les AIP n'est pas prépondérante dans le choix des pistes lors de circonstances suivantes :

- composantes de vent définies dépassées;
- surface de la piste glissante;
- visibilité insuffisante;
- piste alternative demandée par plusieurs pilotes pour des raisons de sécurité;
- annonce de turbulences ou de tempêtes;
- piste préférentielle indisponible (travaux, entretiens,...).

A l'inverse, jusqu'à l'introduction du plan de dispersion (avril 2004), la répartition des atterrissages sur les pistes 25R et 25L n'était pas spécifiées dans les AIP.⁵

A partir de mi 2006 l'usage préférentiel des pistes les samedis a été modifié hebdomadairement par NOTAM⁶ laquelle spécifie que les départs entre 15h00 et 23h00 se font préférentiellement de la piste 20 à la place de la piste 25R. Cette instructions est toujours d'application en 2007, à l'exception de deux samedis.

_

Avant l'introduction du plan de dispersion, durant la période nuit (23-06h) les atterrissages devaient avoir lieux sur la piste 25R pour les vols provenant du nord et de l'ouest et sur la pistes 25L pour les vols provenant du sud et de l'est. Durant la période jour (06-23h) la piste 25L était utilisée préférentiellement pour les atterrissages mais la piste 25R pouvait également être utilisée en cas de deux atterrissages simultanés ou quand la direction du trafic aérien l'imposait.

⁶ NOTAM : 'NOte To Air Men'

4. Analyse des données de vols

Le présent chapitre synthétise les différentes données de vols disponibles et les éléments qui ont une influence sur les niveaux de bruit enregistrés tels que le nombre de mouvements, l'utilisation des pistes, l'utilisation des procédures et les types d'appareils utilisés. Cette analyse repose sur les informations de vols rassemblées dans la « Central Database » (CDB) gérée par The Brussels Airport Company. Une analyse détaillée des données vols de la CDB est disponible à l'annexe A..

Pour les statistiques officielles de Belgocontrol, il est fait référence à l'annexe B. Ces données complémentaires se rapportent seulement aux vols en partance et donnent de plus amples renseignements à propos de la fréquence des routes suivies ou SID's.

4.1 Nombre de mouvements

En 2007, **264.366** mouvements ont eu lieux à l'aéroport Brussels Airport (source BruTrends 2007). En comparaison avec l'année précédente, cela représente une augmentation de 3.8 % (254.772 mouvements in 2006). L'évolution du nombre annuel de mouvements d'avions depuis 1985 est représentée à la figure 8.

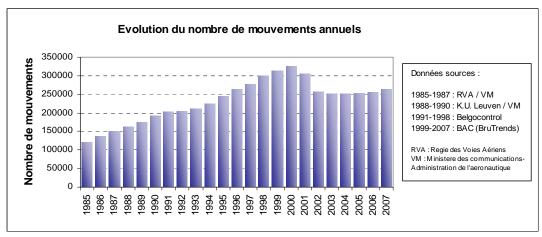


Figure 8 : Evolution du nombre de mouvements annuels (1985-2007)

En 2007 le nombre de vols de nuit (entre 23h00 et 6h00) a atteind **25.100** mouvements dont 203 mouvements d'hélicoptères⁷. En comparaison avec l'année précédente, cela représente une augmentation de 1.4% (24.761 mouvements de nuit in 2006). En 2007, le nombre d'atterrissages la nuit a augmenté de 4,1% alors que le nombre de décollages a diminué de 3,2%.L'évolution annuelle du nombre de mouvements nocturnes depuis 1985 est représentée à la figure 9.

Figure 9 : Evolution du nombre de mouvements nocturnes (1985-2007)

⁷ Helikopterbewegingen vallen buiten het contingent van maximaal 25.000 vluchten dat in de bijzondere voorwaarden van de lopende milieuvergunning is toegekend.

4.2 L'utilisation des pistes

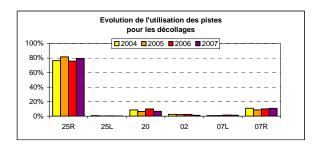
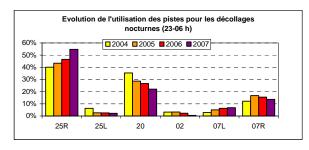
4.2.1 Evolution annuelle de l'utilisation des pistes en 2004-2007

L'évolution de l'utilisation annuelle moyenne pour la période 2004-2007 du nombre total de mouvements et du nombre de mouvements de nuit (période 23-06h) est donnée dans les tableaux et figures suivants. ⁸.

Tableau 4 : répartition des décollages et des atterrissages par piste (valeurs 24 h)

Décollages	Piste 2004		2005	2006	2007
	25R	76.4%	81.6%	75.8%	79.6%
	25L	0.7%	0.3%	0.4%	0.3%
	20	8.6%	6.4%	9.8%	6.7%
	02	2.6%	2.2%	2.4%	1.2%
	07L	0.8%	0.9%	1.4%	1.4%
	07R	11.0%	8.5%	10.1%	10.8%

Atterrissages	Piste	2004	2004 2005		2007
	25R	24.1%	27.0%	32.3%	26.5%
	25L	59.7%	61.2%	52.5%	59.2%
	20	3.2%	1.2%	2.4%	1.8%
	02	13.0%	10.5%	12.4%	12.0%
	07L	0.0%	0.1%	0.1%	0.2%
	07R	0.0%	0.0%	0.3%	0.3%

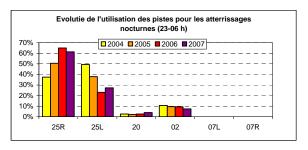


Tableau 5 : répartition des décollages et des atterrissages nocturnes (23-06h) par piste

Décollages	Piste	2004	2005	2006	2007
	25R	40.1%	43.4%	46.5%	54.7%
	25L	6.3%	2.7%	2.6%	2.2%
	20	35.4%	28.7%	26.7%	22.0%
	02	3.2%	3.3%	2.3%	0.5%
	07L	2.9%	5.1%	6.3%	6.8%
	07R	12.1%	16.8%	15.6%	13.7%

Atterrissages	Piste	2004	2005	2006	2007
	25R	37.5%	50.6%	64.9%	61.4%
	25L	49.3%	37.9%	23.1%	27.3%
	20	2.6%	2.2%	2.6%	4.0%
	02	10.6%	9.4%	9.4%	7.4%
	07L	0.0%	0.0%	0.0%	0.0%
	07R	0.0%	0.0%	0.0%	0.0%

L'usage des pistes sur base annuelle présente depuis 2004 de faibles variations.

La tendance observée les années précédentes 2004-2006 durant lesquelles il y avait proportionnellement de plus en plus d'atterrissages sur la piste 25R en comparaison avec la piste 25L n'est pas confirmée. On peut aussi remarquer une relative augmentation du nombre de départs depuis la piste 25R durant la période nocturne. A l'inverse, le nombre de départs nocturnes depuis la piste 20 diminue. Un constat semblable peut être dressé à l'est de l'aéroport où l'on observe une relative augmentation du nombre de départs nocturnes depuis la piste 07L et une diminution du nombre de départs nocturnes depuis la piste 07R.

Exceptionnellement, comme en 2006, les pistes 07L et 07R ont été utilisées en 2007 pour les atterrissages :

- des atterrissages sur la piste 07L: 16 juillet, 23 juillet, 5 août, 13 octobre en 17 décembre 2007;
- des atterrissages sur la piste 07R: 25 mars, 1 mai, 2 mai, 1 octobre en 17 décembre 2007.

Source : CDB (2005/2006) et Direction Générale Transport Aérien (2004)

4.2.2 Evolution mensuelle de l'utilisation des pistes en 2007

Les variations dans l'utilisation des pistes au cours de l'année 2007 s'expliquent principalement par les facteurs suivants:

- la variation des conditions climatiques au cours de l'année a un impact sur la disponibilité des pistes:
- 2) la variabilité du trafic (répartition horaire et intensité du trafic) a un impact sur l'utilisation des pistes.

Les figures 10 et 11 présentent l'évolution mensuelle du nombre total de mouvements et le nombre de mouvements nocturnes (23-06h) par pistes (atterrissages/décollages).



Figure 10 : Evolution mensuelle du nombre total de mouvements par piste (par 24h)

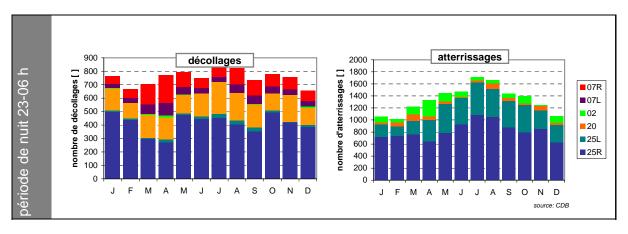


Figure 11 : Evolution mensuelles du nombre de mouvements de nuit par piste (entre 23 et 06h)

Les figures 12, 13 et 14 montrent les évolutions mensuelles moyennes par période et par type de mouvement (arrivée ou départ) suivant les périodes définies par défaut pour le calcul de l'indicateur L_{den} de la directive européenne 2002/49 du 25 juin 2002 relative à la gestion du bruit dans l'environnement.

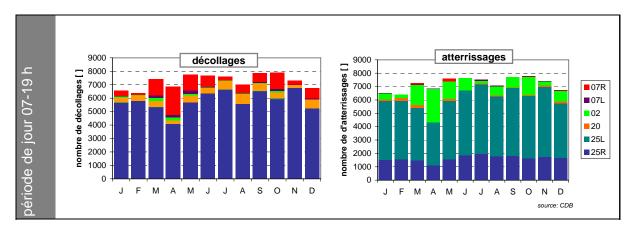


Figure 12 : Evolution mensuelle du nombre de mouvement par piste pour la période jour (07-19h)

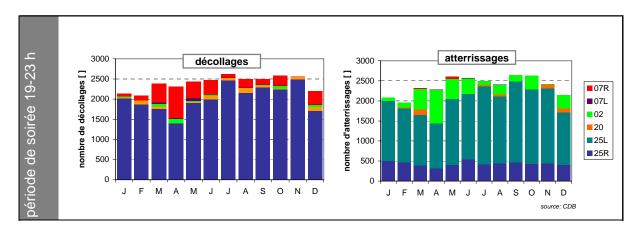


Figure 13 : Evolution mensuelle du nombre de mouvement par piste pour la période soir (19-23h)

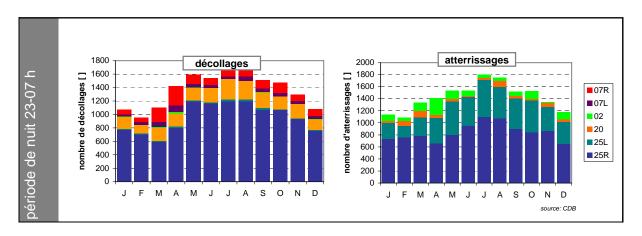
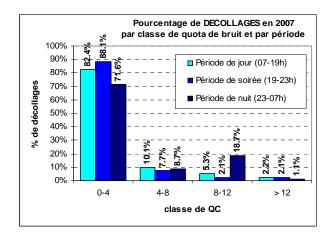


Figure 14 : Evolution mensuelle du nombre de mouvement par piste pour la période nuit (23-07h)

4.3. Les procédures de vol

Le nombre de vols par SID en 2007 entre 06h et 23h, entre 23h et 06h est repris en **annexe A.2** (Brussels Airport CDB) et **annexe B** (Belgocontrol AMS).


En ce qui concerne les routes (SID's) il n'y aucune modification dans le courant de l'année 2007.

4.4. Les types d'avions

Les types d'avions utilisés ont également un impact sur les mesures de bruit. Tous les types d'avions utilisés en 2007, avec leur quota de bruit (QC) **moyen** par mouvement (décollage/atterrissage), sont repris en **annexe A.3**.

Le quota de bruit de chaque appareil est calculé pour le décollage et pour l'atterrissage sur la base des données de certification acoustique. Le quota de bruit permet de donner une indication du bruit à la source. Plus le quota de bruit d'un appareil est élevé, plus les valeurs de certification de cet appareil sont élevées. Le bruit réellement émis dépend néanmoins également d'autres facteurs tels que le taux de chargement de l'appareil, la procédure de décollage ou d'atterrissage utilisée, les conditions météorologiques,...

Le quota de bruit est limité à 12 entre 23h et 06h et à 24 entre 06h et 07h conformément à l'arrêté ministériel du 3 mai 2004. Les vols militaires, certains vols diplomatiques, les vols humanitaires et les vols s'effectuant dans des circonstances exceptionnelles sont exemptés de cette restriction.

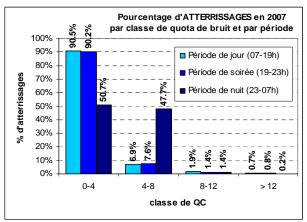


Figure 15 : Répartition des quota de bruit par mouvement pour la période de jour (07-19h), la période de soirée (19-23h) et la période de nuit (23-07h) - source : Central Database (CDB)

Le nombre de vols est beaucoup plus élevé la journée que la nuit avec des différences au niveau des types d'avions utilisés.

La flotte d'avions qui opèrent à Brussels Airport est assez spécifique surtout durant la période nocturne (26-06h). 55% de tous les mouvements sont effectués par des avions du type Airbus A300-B4 (ICAO-code A30B) et Boeing 757-200 (ICAO-code B752). Ces deux types d'appareils sont utilisés pour près de 70% des départs durant la nuit. La figure 16 reprend l'évolution, depuis 2003, du nombre d'avions du type B752 et A30B par rapport au nombre total de mouvements nocturnes.

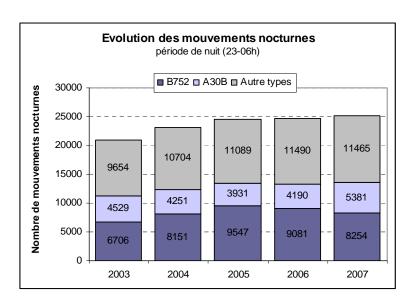


Figure 16 : Nombres de mouvements nocturnes par type (2003-2007)

Le nombre de mouvements nocturnes (départs et arrivées) réalisés avec des avions du type B752 et A30B présente une augmentation de 20% par rapport à l'année 2003.

Le graphique qui suit, reprend, à titre d'illustration, la répartition (en pourcentage) des mouvements nocturnes des avions du type B757 et A30B qui sont les avions les plus utilisés par le principal opérateur nocturne (DHL). On peut constater que cette répartition pour l'année 2007 est comparable à celle observée en 2003.

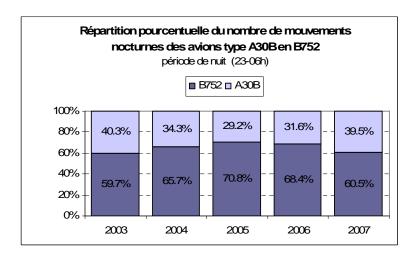


Figure 17 : Pourcentages de mouvements nocturnes par type (2003-2007)

5. Résumé des résultats des mesures

Les résultats des mesures proviennent de la corrélation des vols opérée par le Noise Monitoring System (NMS), géré par l'exploitant de l'aéroport, et sont rassemblés ci-après sous forme de tableaux. Les indicateurs acoustiques utilisés pour caractériser la situation acoustique aux différents points de mesures sont les suivants:

- L_{den}
- L_{night}
- nxL_{Amax}>70, 07-23h (période jour)
- nxL_{Amax}>70, 23-07h (période nuit)

L'annexe C reprend de manière détaillées les résultats d'indicateurs supplémentaires spécifiques (L_{day} , $L_{evening}$, L_{night} , L_{DN} , $L_{Aeq,06-23u}$, $L_{Aeq,23-06u}$,....), l'évolution mensuelle des indicateurs étudiés et la distribution des niveaux maximum de bruit par classe de 5 dB. Cette annexe reprend aussi une comparaison entre les données mesurées relatives à l'année 2005 et 2006 et pour les indicateurs nocturnes (L_{night} et $nxL_{Amax>70, 23-07h}$) aux années 2003, 2004, 2005 et 2006.

L'indicateur nxL_{Amax>70} est une valeur issue de la distribution des niveaux maximum de bruit. Cette valeur peut être directement lue à partir des distributions cumulées des niveaux maximum de bruit. La valeur de ce paramètre nxLAmax>70 est très sensible et fortement dépendant de la forme de la distribution des niveaux maximum de bruit et ce en particulier aux alentours du niveau de 70 dB(A).

Pour info, l'annexe **D** reprend la distribution détaillée des niveaux maximum de bruit donnés en fonction de l'utilisation des pistes ou du type de mouvements (arrivée/départ).

5.1. Résumé et comparaison avec les résultats des calculs d'INM

Les résultats sont repris ci-après sous forme de tableaux.

Le tableau reprend, pour chaque indicateur, la comparaison avec les valeurs des contours de bruit calculés à l'aide du modèle INM⁹ version 6.0c. Ces résultats calculés se retrouvent aussi partiellement dans le rapport des contours de bruit ¹⁰ réalisé par le « Laboratorium Akoestiek en Thermische Fysica (ATF), K.U. Leuven » à la demande de Brussels Airport.

Cette étude comparative ne permet pas de se prononcer sur la précision du modèle de calcul utilisé. Elle donne seulement une indication sur la comparabilité des valeurs mesurées et calculées aux différents points de mesure. Les résultats des calculs sont basés sur la contribution du bruit incident tandis que les résultats des mesures de bruit sont toujours influencés par les circonstances spécifiques locales, et donc des incertitudes supplémentaires inhérentes aux mesures (aveugles) (influence du bruit de fond, les limitations en matière de la corrélation aux vols, à la contribution des réflexions liées à la configuration des lieux, etc....).

Les résultats relatifs aux indicateurs acoustiques étudiés sont précédés et complétés des résultats pour le niveau $L_{Aeq,24h}$ repris également dans le rapport des contours 2007 qui donne une première indication globale au sujet de la comparabilité des mesures et des calculs.

Surveillance du bruit - Brussels Airport Rapport annuel 2007 24

⁹ INM: Integrated Noise Model, mis à disposition par la Federal Aviation Administration (FAA) des Etats-Unis

Contours de bruit aux alentours de l'aéroport Brussels Airport – Année 2007, rapport P.V. 5061N, du. 21.04.2008, Laboratorium voor Akoestiek en Thermische Fysica, KU Leuven.

Tabel 6 : resultaten voor LAeq,24u

			\neg	Activiteits	LAe	eq,24u	ſ	
				graad	meting	berekening	ŀ	verschil
BEHEERDER	NMT	LOCATIE	-	[%]	NMS	INM	ŀ	INM-NMS
BEHEERBER	1 11111	200/112	_	[,0]	111110		L	
Brussels Airport	1	STEENOKKERZEEL	(*)	98.0%		_	ſ	- 1
Braccole 7 inport	2-2	KORTENBERG	\ /	99.8%	69.0	68.9		-0.1
	3-2	_	(*)	99.9%	-	-		-
	4	NOSSEGEM	\ /	99.8%	65.0	63.3		-1.7
	6	EVERE		99.4%	52.4	50.5		-1.9
	7	STERREBEEK		97.2%	50.2	48.1		-2.1
	8	KAMPENHOUT		99.1%	55.8	54.9		-0.9
	9	PERK		99.9%	46.9	49.0		2.1
	10	N.O-HEEMBEEK		99.3%	55.2	54.3		-0.9
	11-2	ST-PWOLUWE		99.7%	52.2	51.8		-0.4
	12	DUISBURG		99.8%	42.1	46.9		4.8
	13	GRIMBERGEN		99.6%	41.8	45.7		3.9
	14	WEMMEL		99.3%	46.4	47.0		0.6
	15-3	ZAVENTEM	(*)	99.2%	_	-		-
	16 / 16-2	VELTEM	` /	99.1%	57.2	57.1		-0.1
	19-2	VILVOORDE		99.9%	51.4	52.1		0.7
	20	MACHELEN		97.5%	51.3	54.1		2.8
	21	STROMBEEK-BEVER		100.0%	51.4	50.5		-0.9
	23	STEENOKKERZEEL	(*)	99.9%	-	-		-
	24	KRAAINEM	Ì	99.1%	53.6	53.3		-0.3
	26 / 26-2	BRUSSEL		99.5%	47.9	47.8		-0.1
				<u> </u>		-	•	
BIM / IBGE	30	HAREN		99.9%	60.7	58.9	ſ	-1.8
	31	EVERE		99.9%	52.9	50.3		-2.6
							-	
LNE	40	KONINGSLO		99.9%	53.0	51.9	Ī	-1.1
	41	GRIMBERGEN		99.9%	48.4	47.4		-1.0
	42	DIEGEM		99.9%	65.6	64.9		-0.7
	43	ERPS-KWERPS		99.5%	56.4	55.5	J	-0.9
	44	TERVUREN		99.7%	48.6	48.0		-0.6
	45	MEISE		99.6%	44.4	44.2		-0.2
	46-2	WEZEMBEEK-OPPEM		99.2%	56.0	55.2		-0.8
	47-2	WEZEMBEEK-OPPEM		99.0%	51.1	49.6		-1.5
	48-2	BERTEM		99.8%	45.0	44.3		-0.7
(+) NINAT		thaventerrein (combinatie van d	_	· · 				

^(*) NMT gelegen op of nabij het luchthaventerrein (combinatie van grondlawaai en overvluchten)

A l'exception de quelques stations (NMT 12, 13 en 20), les différences entre les mesures et les calculs restent limitées à 2 dB(A).

Une explication possible concernant les écarts importants aux stations NMT 12 en 13 est donnée dans le rapport relatif aux contours de bruit de l'année 2007 : les niveaux de bruit produits par les passages d'avions sont comparables aux niveaux du seuil de déclenchement de cettes stations de mesures. En conséquence, une partie des vols ne fait pas toujours l'objet d'un enregistrement d'un événement acoustique au niveau de la station de mesure.

Tableau 7	rácultata	pour Lnight
i abieau 1	. resultats	pour Lingin

				Taux		aula 4	1 1	1
						ght		-1'66 (
EVDI OITANIT	NINAT	LOCALICATION		d'activité	mesuré	calculé		différence
EXPLOITANT	NMT	LOCALISATION		[%]	NMS	INM		INM-NMS
D 1 4: (OTERNOUS EDITER	(+)	07.00/				
Brussels Airport	1	STEENOKKERZEEL	(*)	97.9%	-	-		-
	2-2	KORTENBERG	(4)	99.9%	64.5	63.6		-0.9
	3-2	HUMELGEM -Airside	(*)	99.9%				-
	4	NOSSEGEM		99.9%	63.0	59.4		-3.6
	6	EVERE		99.4%	48.0	44.9		-3.1
	7	STERREBEEK		97.2%	51.3	46.7		-4.6
	8	KAMPENHOUT		99.1%	55.9	54.1		-1.8
	9	PERK		99.9%	41.4	44.6		3.2
	10	N.O-HEEMBEEK		99.1%	53.7	50.8		-2.9
	11-2	WOLUWE-ST. PIERRE		99.7%	48.2	46.5		-1.7
	12	DUISBURG		99.7%	42.9	43.3		0.4
	13	GRIMBERGEN		99.4%	33.4	39.3		5.9
	14	WEMMEL		99.4%	44.8	43.3		-1.5
	15-3	ZAVENTEM	(*)	99.3%	-	-		-
	16 / 16-2	VELTEM		99.0%	52.4	51.8		-0.6
	19-2	VILVOORDE		99.9%	49.2	47.1		-2.1
	20	MACHELEN		97.5%	47.1	49.4		2.3
	21	STROMBEEK-BEVER		100.0%	50.5	47.6		-2.9
	23	STEENOKKERZEEL	(*)	100.0%	-	-		-
	24	KRAAINEM	` /	98.9%	49.3	47.8		-1.5
	26 / 26-2	BRUXELLES		99.7%	40.5	39.5		-1.0
		•						
BIM / IBGE	30	HAREN		99.8%	57.1	52.6		-4.5
	31	EVERE		99.8%	48.8	44.8		-4.0
LNE	40	KONINGSLO		99.9%	51.6	48.7		-2.9
	41	GRIMBERGEN		99.9%	46.2	43.5		-2.7
	42	DIEGEM		99.9%	62.6	59.4		-3.2
	43	ERPS-KWERPS		99.5%	52.4	50.2		-2.2
	44	TERVUREN		99.6%	48.6	45.2		-3. <i>4</i>
	45	MEISE		99.6%	42.5	40.0		-2.5
	46-2	WEZEMBEEK-OPPEM		99.3%	51.8	49.7		-2.1
	47-2	WEZEMBEEK-OPPEM		99.0%	50.1	46.8		-3.3
	48-2	BERTEM		99.8%	41.9	39.4		-3.3 -2.5
(*) NMT située sur ou		terrain de l'aéroport (combinai	son o					2.0

^(*) NMT située sur ou à proximité du terrain de l'aéroport (combinaison des bruits des avions au sol et en survol)

La comparaison entre les valeurs calculées et mesurées montre que le modèle de calcul INM produit presque systématiquement une valeur inférieure. Ceci a déjà été constaté dans le cadre des rapports annuels précédents. Une explication partielle a été avancée dans les rapports des contours de bruit. Ces déviations systématiques proviendraient de la contribution spécifique des avions du type Boeing 757 (B757), un type d'avion fréquemment utilisé par le principal opérateur nocturne. Ce type d'avion est généralement considéré dans la banque de données du modèle de calcul INM 6.0c comme étant moins bruyant que le type réellement utilisé par les opérateurs de nuit.

Pour certains points de mesure (NMT 12, 13 et 20) - comme constaté précédemment dans les rapports annuels de 2005 et 2006 - la correspondance entre mesure et calcul est meilleure ou l'écart est dans l'autre sens. Ceci est une conséquence possible de la combinaison de deux aspects différents : d'une part, la sous estimation dans INM (valeur calculée trop basse) et d'autre part, l'influence du seuil de détection relativement élevé sur le nombre d'événements acoustiques (valeur mesurée trop faible).

Tableau 8 : résultats pour Lden

				Taux	Lden		lΓ	
				d'activité	mesuré	calculé	1	différence
EXPLOITANT	NMT	LOCALISATION		[%]	NMS	INM	1	INM-NMS
							╽┖	
Brussels Airport	1	STEENOKKERZEEL	(*)	98.0%	-	-	lг	-
'	2-2	KORTENBERG	` '	99.8%	73.0	72.7		-0.3
	3-2	HUMELGEM -Airside	(*)	99.9%	-	-		-
	4	NOSSEGEM	, ,	99.8%	70.1	67.5		-2.6
	6	EVERE		99.4%	56.4	54.1		-2.3
	7	STERREBEEK		97.2%	57.2	53.4		-3.8
	8	KAMPENHOUT		99.1%	62.2	60.7		-1.5
	9	PERK		99.9%	50.4	52.9		2.5
	10	N.O-HEEMBEEK		99.3%	60.6	58.6		-2.0
	11-2	WOLUWE-ST. PIERRE		99.7%	56.4	55.5		-0.9
	12	DUISBURG		99.8%	48.9	51.2		2.3
	13	GRIMBERGEN		99.6%	45.0	49.1		4.1
	14	WEMMEL		99.3%	51.5	51.2		-0.3
	15-3	ZAVENTEM	(*)	99.2%	-	-		-
	16 / 16-2	VELTEM		99.1%	61.1	60.8		-0.3
	19-2	VILVOORDE		99.9%	56.5	56.0		-0.5
	20	MACHELEN		97.5%	55.5	57.7		2.2
	21	STROMBEEK-BEVER		100.0%	57.0	55.1		-1.9
	23	STEENOKKERZEEL	(*)	99.9%	-	-		-
	24	KRAAINEM		99.1%	57.6	56.9		-0.7
	26 / 26-2	BRUXELLES		99.5%	51.0	50.6	l L	-0.4
							_	
BIM / IBGE	30	HAREN		99.9%	65.1	62.2		-2.9
	31	EVERE		99.9%	57.1	53.8	l L	-3.3
		T					. –	
LNE	40	KONINGSLO		99.9%	58.4	56.3		-2.1
	41	GRIMBERGEN		99.9%	53.4	51.6		-1.8
	42	DIEGEM		99.9%	70.2	68.4		-1.8
	43	ERPS-KWERPS		99.5%	60.6	59.2		-1.4
	44	TERVUREN		99.7%	54.8	52.7		-2.1
	45	MEISE		99.6%	49.4	48.1		-1.3
	46-2	WEZEMBEEK-OPPEM		99.2%	60.1	58.8		-1.3
	47-2	WEZEMBEEK-OPPEM		99.0%	56.7	54.3		-2.4
	48-2	BERTEM	ب	99.8%	49.5	48.1	ΙL	-1.4

^(*) NMT située sur ou à proximité du terrain de l'aéroport (combinaison des bruits des avions au sol et en survol)

Le niveau L_{den} est une combinaison de niveaux acoustiques équivalents. Il est particulièrement influencé par le niveau nocturne (indicateur L_{night}) pour lequel une pénalité de 10 dB(A) est appliquée. Les constatations en rapport avec l'indicateur L_{night} restent donc valables pour l'indicateur L_{den} , avec comme conséquence des valeurs mesurées plus élevées que les valeurs calculées, pour la plupart des points de mesure.

Tableau 9 : résultats pour nxLAmax>70, 07-23h (période de jour)

				Taux	nxLAn	nax>70		
				d'activité	mesuré	calculé	différenc	е
EXPLOITANT	NMT	LOCALISATION		[%]	NMS	INM	INM-NM	S
Brussels Airport	1	STEENOKKERZEEL	(*)	98.1%	-	-	-	
	2-2	KORTENBERG		99.8%	218.7	236.7	18.0	
	3-2	HUMELGEM -Airside	(*)	99.9%	-	-	-	
	4	NOSSEGEM		99.8%	55.6	57.9	2.3	
	6	EVERE		99.4%	42.6	23.7	-18.9	
	7	STERREBEEK		97.3%	10.8	7.8	-3.0	
	8	KAMPENHOUT		99.1%	46.1	54.1	7.9	
	9	PERK		99.8%	5.0	4.2	-0.8	
	10	N.O-HEEMBEEK		99.4%	56.3	46.5	-9.8	
	11-2	WOLUWE-ST. PIERRE		99.7%	40.3	34.6	-5.7	
	12	DUISBURG		99.8%	2.8	2.2	-0.7	
	13	GRIMBERGEN		99.8%	2.8	3.2	0.4	
	14	WEMMEL		99.3%	8.5	6.1	-2.5	
	15-3	ZAVENTEM	(*)	99.1%	-	-	-	
	16 / 16-2	VELTEM		99.2%	152.4	165.2	12.8	
	19-2	VILVOORDE		99.9%	25.7	22.6	-3.1	
	20	MACHELEN		97.5%	19.1	28.5	9.3	
	21	STROMBEEK-BEVER		99.9%	27.0	19.0	-8.0	
	23	STEENOKKERZEEL	(*)	99.9%	-	-	-	
	24	KRAAINEM		99.3%	60.5	46.2	-14.3	
	26 / 26-2	BRUXELLES		99.3%	4.0	4.0	0.1	
BIM / IBGE	30	HAREN		100.0%	129.4	92.5	-36.9	
	31	EVERE		99.9%	37.2	22.8	-14.3	
	_							
LNE	40	KONINGSLO		99.9%	41.0	30.7	-10.3	
	41	GRIMBERGEN		99.9%	14.8	5.2	-9.6	
	42	DIEGEM		100.0%	176.2	227.7	51.5	
	43	ERPS-KWERPS		99.6%	118.7	79.8	-38.9	
	44	TERVUREN		99.7%	11.9	6.9	-5.1	
	45	MEISE		99.6%	4.8	2.8	-2.0	
	46-2	WEZEMBEEK-OPPEM		99.2%	75.9	51.8	-24.1	
	47-2	WEZEMBEEK-OPPEM		99.0%	18.5	10.0	-8.5	
	48-2	BERTEM		99.7%	7.3	2.5	-4.8	

^(*) NMT située sur ou à proximité du terrain de l'aéroport (combinaison des bruits des avions au sol et en survol)

Tableau 10 : résultats pour nxLAmax>70,23-07h (période de nuit)

				Taux	nxLAn	nax>70		
				d'activité	mesuré	calculé	différence	€
EXPLOITANT	NMT	LOCALISATION		[%]	NMS	INM	INM-NMS	_
				[74]				
Brussels Airport	1	STEENOKKERZEEL	(*)	97.9%	-	-	-	\neg
· ·	2-2	KORTENBERG	· í	99.9%	17.1	18.5	1.5	
	3-2	HUMELGEM -Airside	(*)	99.9%	-	-	-	
	4	NOSSEGEM	Ì	99.9%	9.7	10.2	0.6	
	6	EVERE		99.4%	5.1	2.7	-2.4	
	7	STERREBEEK		97.2%	5.1	3.6	-1.6	
	8	KAMPENHOUT		99.1%	25.3	26.8	1.5	
	9	PERK		99.9%	1.1	0.7	-0.5	
	10	N.O-HEEMBEEK		99.1%	12.2	11.1	-1.0	
	11-2	WOLUWE-ST. PIERRE		99.7%	4.6	3.6	-1.0	
	12	DUISBURG		99.7%	1.7	1.3	-0.4	
	13	GRIMBERGEN		99.4%	0.2	0.3	0.1	
	14	WEMMEL		99.4%	2.1	2.2	0.1	
	15-3	ZAVENTEM	(*)	99.3%	-	-	-	
	16 / 16-2	VELTEM		99.0%	13.4	14.3	0.8	
	19-2	VILVOORDE		99.9%	6.5	4.6	-1.9	
	20	MACHELEN		97.5%	4.9	5.6	0.7	
	21	STROMBEEK-BEVER		100.0%	7.7	6.3	-1.4	
	23	STEENOKKERZEEL	(*)	100.0%	-	-	-	
	24	KRAAINEM		98.9%	6.5	5.2	-1.3	
	26 / 26-2	BRUXELLES		99.7%	1.5	0.1	-1.4	
BIM / IBGE	30	HAREN		99.8%	20.8	15.5	-5.4	
	31	EVERE		99.8%	4.7	2.7	-2.0	
	1	•				1		
LNE	40	KONINGSLO		99.9%	9.4	8.1	-1.3	
	41	GRIMBERGEN		99.9%	3.3	1.8	-1.5	
	42	DIEGEM		99.9%	29.3	30.5	1.3	
	43	ERPS-KWERPS		99.5%	14.6	11.8	-2.8	
	44	TERVUREN		99.6%	4.7	2.7	-2.0	
	45	MEISE		99.6%	1.0	0.3	-0.7	
	46-2	WEZEMBEEK-OPPEM		99.3%	6.8	5.1	-1.7	
	47-2	WEZEMBEEK-OPPEM		99.0%	5.5	3.6	-1.9	
	48-2	BERTEM		99.8%	1.2	0.8	-0.4	

^(*) NMT située sur ou à proximité du terrain de l'aéroport (combinaison des bruits des avions au sol et en survol)

5.2. Evolution des grandeurs acoustiques

En 2005, le gestionnaire de l'aéroport a légèrement modifié la procédure de corrélation des vols dans le système NMS et a optimalisé la corrélation pour certaines stations de mesure. Les données des années consécutives 2005, 2006 et 2007 sont, depuis lors, traitées et corrélées aux mouvements d'avions de la même manière.

Le tableau 11 de la page suivante donne une image globale de l'évolution moyenne annuelle des indicateurs de bruit L_{day} , $L_{evening}$, L_{night} en L_{den} depuis 2005.

Le(s) mécanisme(s) qui sont à l'origine des fluctuations des moyennes annuelles d'immissions sonores ne sont pas toujours simples à établir. L'évolution de la moyenne annuelle de l'utilisation des pistes et les changements dans la composition de la flotte sont évidement des facteurs d'influence importants.

Il est en outre nécessaire de constater qu'une diminution ou augmentation des immissions sonores à un point de mesure déterminé se reflète dans l'évolution des immissions sonores calculées de façon à ce que cela puisse être visualisé au moyen des contours de bruit annuels calculés des différents indicateurs (figures 17 à 20). Les explications pour les fluctuations ou changements des contours de bruit annuels calculés s'appliquent donc aussi dans de nombreux cas aux fluctuations constatées dans les résultats mesurés.

Lableau	11 : comparaison des indicateurs equival	ents (2005-2006-2007)

					Lday 07-19u		Levening Lnight 19-23u 23h-07u			Lden					
BEHEERDER	NMT	LOCATIE		2005	2006	2007	2005	2006	2007	2005	2006	2007	2005	2006	2007
		•													
Brussels Airport	1	STEENOKKERZEEL	(*)	-	-	-	-	-	-	-	-	-	-	-	-
	2/2-2	KORTENBERG		70.8	70.3	70.2	70.8	70.0	70.0	67.2	64.3	64.5	74.8	72.9	73.0
	3-2	HUMELGEM - Airside	(*)	-	-	-	-	-	-	-	-	-	-	-	-
	4	NOSSEGEM		65.4	66.2	66.1	63.8	64.6	64.6	64.0	64.0	63.0	70.5	70.8	70.1
	6	EVERE		54.1	53.3	53.7	53.3	52.3	53.4	47.9	46.5	48.0	56.5	55.4	56.4
	7	STERREBEEK		49.7	51.4	50.3	38.6	47.5	46.5	52.4	52.3	51.3	58.0	58.3	57.2
	8	KAMPENHOUT		55.5	56.3	56.1	54.3	55.6	54.6	54.7	55.9	55.9	61.1	62.3	62.2
	9	PERK		49.7	50.5	48.6	48.6	49.0	47.2	46.6	44.7	41.4	53.8	52.9	50.4
	10	N.O-HEEMBEEK		56.7	56.3	56.1	55.5	54.6	54.4	52.3	52.2	53.7	59.9	59.6	60.6
	11/11-2	ST-PWOLUWE		52.7	53.2	53.6	52.3	52.2	52.8	49.2	49.1	48.2	56.6	56.6	56.4
	12	DUISBURG		41.7	43.3	42.2	32.8	39.6	39.2	42.4	43.5	42.9	48.2	49.6	48.9
	13	GRIMBERGEN		43.2	43.0	43.0	44.3	43.4	44.3	32.6	34.3	33.4	44.9	44.8	45.0
	14	WEMMEL		47.9	47.6	47.7	46.4	44.2	43.8	43.0	41.7	44.8	50.8	49.7	51.5
	15-3	ZAVENTEM	(*)	-	-	-	-	-	-	-	-	-	-	-	-
	16 / 16-2	VELTEM		59.2	58.5	58.5	59.3	58.5	58.3	54.4	52.2	52.4	62.5	61.1	61.1
	19/19-2	VILVOORDE		51.9	52.1	52.1	51.9	51.1	52.3	47.3	48.0	49.2	55.3	55.6	56.5
	20	MACHELEN		53.3	52.6	52.4	52.9	52.2	52.6	46.3	46.3	47.1	55.5	55.1	55.5
	21	STROMBEEK-BEVER		52.4	51.9	52.3	50.5	49.2	49.3	49.0	48.1	50.5	56.1	55.3	57.0
	23	STEENOKKERZEEL	(*)	-	-	-	-	-	-	-	-	-	-	-	-
	24	KRAAINEM		54.6	54.6	54.9	53.9	53.6	54.3	50.5	49.7	49.3	58.1	57.6	57.6
	26 / 26-2	BRUSSEL		47.8	47.2	49.4	48.2	47.1	49.2	41.2	40.4	40.5	50.4	49.5	51.0
BIM / IBGE	30	HAREN		62.2	61.6	62.0	62.1	60.6	61.2	56.3	55.8	57.1	64.9	64.2	65.1
	31	EVERE		54.1	53.7	54.2	53.6	52.8	53.9	48.1	48.3	48.8	56.7	56.4	57.1
LNE	40	KONINGSLO		54.3	54.1	54.0	53.1	52.5	52.3	49.8	49.8	51.6	57.5	57.3	58.4
	41	GRIMBERGEN		49.6	49.3	49.5	49.6	48.5	48.1	44.8	45.1	46.2	52.9	52.7	53.4
	42	DIEGEM		66.9	66.7	66.9	65.9	65.2	65.8	61.2	61.4	62.6	69.5	69.3	70.2
	43	ERPS-KWERPS		57.2	57.2	57.6	56.9	56.3	57.1	53.3	51.9	52.4	60.9	60.0	60.6
	44	TERVUREN		48.3	49.9	49.2	41.9	46.7	46.4	48.5	49.2	48.6	54.4	55.4	54.8
	45	MEISE		46.5	46.1	45.7	45.1	43.8	42.1	41.2	40.7	42.5	49.2	48.6	49.4
	46/46-2	WEZEMBEEK-OPPEM	(**)	56.1	57.0	57.3	55.1	56.3	56.8	52.6	52.4	51.8	59.9	60.2	60.1
	47-2	WEZEMBEEK-OPPEM		51.9	52.8	52.0	47.0	50.0	49.6	50.6	50.7	50.1	56.9	57.3	56.7
	48-2	BERTEM	(***)	-	46.0	46.4	-	44.0	44.7	_	42.3	41.9	-	49.6	49.5

^(*) NMT située sur ou à proximité du terrain de l'aéroport (combinaison des bruits des avions au sol et en survol)

^(**) possibilité de comparaison limitée en raison du taux d'activité faible (56%) pour l'ensemble des NMT 46-2 et NMT 46-1 (voir rapport annuel 2005)

^(***) pas de possibilité de comparaison: NMT 48-2 inactive en 2005

D'un point de vue des procédures de vols et de la composition de la flotte, la période diurne, définie de 07h00 à 23h00 est une période assez homogène. Les évolutions des indicateurs L_{day} en $L_{evening}$ sont plutôt limitées durant la période 2005-2007.

Ceci ne s'applique pas à l'indicateur nocturne L_{night} , pour lequel un certain canevas peut être déterminé dans l'évolution des résultats moyens annuels mesurés en 2005, 2006 et 2007, qui pour la plupart des points, est en accord avec l'évolution des contour de bruit du L_{night} (figure 19):

- Pour les stations 10, 13, 14, 19/19-2, 20, 21, 40 et 41 ('noordrand'), influencées par les départs de la piste 25R avec un tracé de vol vers l'ouest ainsi que pour la station NMT 30 en région Bruxelloise, on observe en 2007, par rapport à 2005, une augmentation significative des valeurs annuelles du Lnight. A l'exception des quelques stations situées le plus au nord (NMT 13, 19/19-2, 20 et 41), cette augmentation s'accompagne partiellement d'une légère diminution en 2006,.
- Pour la station NMT 42, influencée par tous les départs possibles de la piste 25R, il est question d'une légère augmentation du Lnight en 2006 suivie d'une augmentation plus forte en 2007.
- Pour les stations NMT 31 et NMT 06 situées dans la région Bruxelloise, influencées par les départs de la piste 25R en direction de l'est, l'augmentation globale du L_{night} entre 2005 et 2007 est limitée, avec pour NMT 06 une diminution significative en 2006. Les immissions sonores aux stations NMT26/26-2 à Bruxelles, sous la « route du Canal » ont diminué par rapport à 2005.
- Les stations NMT 11-2, 24, 46-2 et 47-2 ("oostrand") influencées par les départs de la 25R en direction de l'est mais aussi dans une forte mesure par les atterrissages sur la piste 02 et départs de la piste 20, présentent en 2007 une diminution globale du L_{night} en comparaison avec 2006. Pour les stations situées sous les routes de départ de la piste 20 en direction de l'est, une diminution significative peut être remarquée au stations NMT 04 et NMT 07, toutefois cela ne s'applique pas aux stations NMT 44 et NMT 12 plus éloignées de l'aéroport.
- A l'est de l'aéroport les immissions sonores nocturnes sont surtout influencées par les atterrissages et la répartition de ceux-ci sur les deux pistes parallèles 25L et 25R et les décollages occasionnels sur la piste 07R (et 07L). Aux stations NMT 2/2-2, 43 et 16/16-2, dans le prolongement de la piste 25L/07R, après une diminution considérable en 2006, on observe une légère augmentation en 2007 sans pour autant atteindre les niveaux de 2005. En comparaison avec 2005, les immissions sonores ont diminué de manière significative. Pour la station NMT 08, située dans la zone d'atterrissage de la piste 25R, il était question d'une augmentation en 2006 mais les immissions sonores sont ensuite restées au même niveau en 2007. Au point de mesure NMT48-2, exclusivement influencé par les départs de la piste 07R (et aussi 07L), les immisssions sonores présentent une légère diminution en 2007 par rapport à l'année 2006.
- Au nord, dans le prolongement de la piste 02 on observe à la station NMT 09 durant les années successives une forte diminution du L_{night}. Cette diminution n'apparait pas de façon aussi significative dans l'évolution des contours de bruit.

Les mêmes constats peuvent être dressés pour l'indicateur L_{den} . Cet indicateur est calculé à partir des indicateurs L_{day} , $L_{evening}$ et L_{night} , dans lequel une pénalité de 10 dB est appliquée au L_{night} et une pénalité de 5 dB est appliquée au $L_{evening}$. En raison de cette pénalité pour la période nocturne, les modifications du L_{night} , à côté des contributions inchangées des L_{day} et $L_{evening}$, ont un impact sur la valeur du L_{den} .

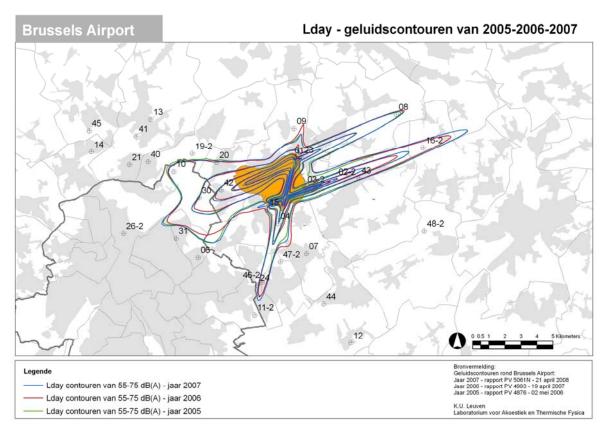


Figure 18: Evolution des contours de Lday 2005-2007

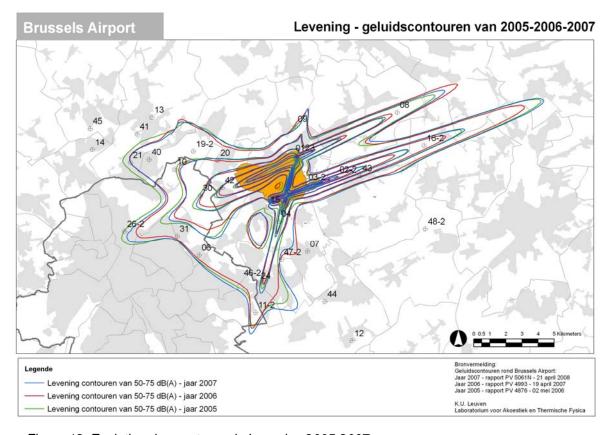


Figure 19: Evolution des contours de Levening 2005-2007

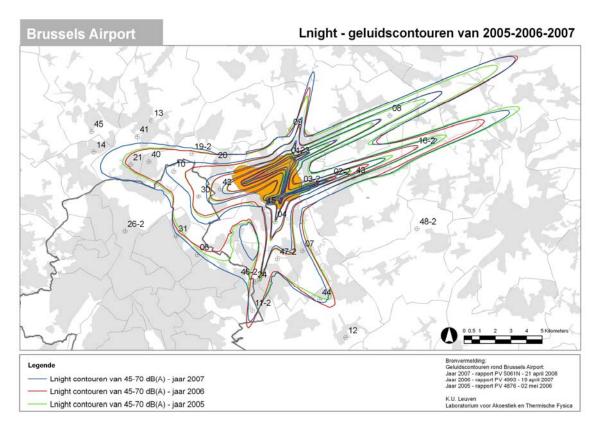


Figure 20: Evolution des contours de Lnight 2005-2007

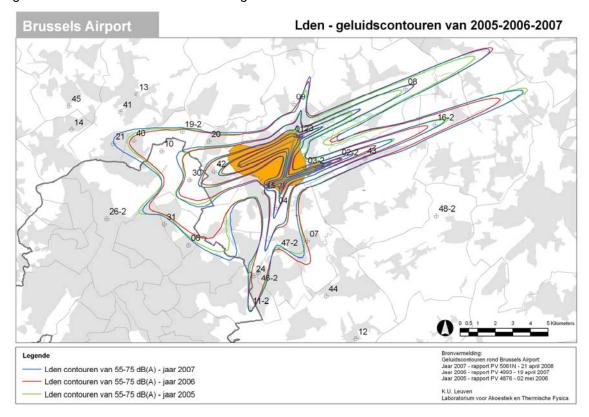


Figure 21: Evolution des contours de Lden 2005-2007

Tableau 12 : comparaison des fréquences de dépassement nxLAmax>70 (2005-2006-2007)

				nxLAmax>70			nxLAmax>70			
					07-23h	•		23-07h	•	
EXPLOITANT	NMT	LOCALISATION		2005	2006	2007	2005	2006	2007	
Brussels Airport	1	STEENOKKERZEEL	(*)	-	-	-	-	-	-	
	2/2-2	KORTENBERG		213.8	199.4	218.7	21.7	15.5	17.1	
	3-2	HUMELGEM -Airside	(*)	-	-	-	-	-	-	
	4	NOSSEGEM		45.1	61.3	55.6	12.3	12.6	9.7	
	6	EVERE		43.8	38.5	42.6	4.2	3.5	5.1	
	7	STERREBEEK		8.5	14.8	10.8	6.2	6.6	5.1	
	8	KAMPENHOUT		46.3	59.5	46.1	20.6	26.5	25.3	
	9	PERK		6.8	9.1	5.0	1.5	1.2	1.1	
	10	N.O-HEEMBEEK		65.4	60.1	56.3	9.2	8.7	12.2	
	11/11-2	WOLUWE-ST. PIERRE		34.1	37.4	40.3	5.5	5.2	4.6	
	12	DUISBURG		2.3	3.9	2.8	1.7	2.2	1.7	
	13	GRIMBERGEN		3.5	3.2	2.8	0.3	0.3	0.2	
	14	WEMMEL		9.3	8.6	8.5	1.6	1.3	2.1	
	15-3	ZAVENTEM	(*)	-	-	-	-	-	-	
	16 / 16-2	VELTEM		160.9	139.9	152.4	17.9	11.7	13.4	
	19/19-2	VILVOORDE		31.6	25.8	25.7	5.2	4.9	6.5	
	20	MACHELEN		24.2	19.7	19.1	4.2	4.0	4.9	
	21	STROMBEEK-BEVER		27.1	24.3	27.0	5.4	5.2	7.7	
	23	STEENOKKERZEEL	(*)	-	-	-	-	-	-	
	24	KRAAINEM		53.0	55.8	60.5	7.3	6.2	6.5	
	26 / 26-2	BRUXELLES		3.3	3.2	4.0	1.7	1.6	1.5	
	•	1								
BIM / IBGE	30	HAREN		129.6	120.7	129.4	15.6	15.5	20.8	
	31	EVERE		35.2	32.5	37.2	4.1	4.1	4.7	
LNE	40	KONINGSLO		43.2	41.6	41.0	6.7	6.7	9.4	
LINE	40	GRIMBERGEN		43.2 15.2	14.4	14.8	2.6	2.3	3.3	
	41	DIEGEM		173.9	165.0	176.2	2.6	2.3 21.4	29.3	
	42	ERPS-KWERPS			105.0	118.7				
	43 44	TERVUREN		107.0 8.2	105.2 14.2	118.7 11.9	18.8 5.2	13.2 5.8	14.6 4.7	
	44 45	MEISE		6.2 5.7	5.2	4.8	0.8	0.7	1.0	
	45 46/46-2	WEZEMBEEK-OPPEM	(**)	5.7 48.0	5.∠ 71.2	4.8 75.9	0.8 5.6	0.7 6.5	6.8	
	46/46-2 47-2	WEZEMBEEK-OPPEM		46.0 16.2	23.0	75.9 18.5	6.5	6.9	5.5	
	47-2 48-2	BERTEM	(***)	10.∠	23.0 6.8	7.3	0.5	1.3	5.5 1.2	
(#) NINAT -11 (40-2	DELVIEINI	()		0.0	1.3		1.3	1.2	

^(*) NMT située sur ou à proximité du terrain de l'aéroport (combinaison des bruits des avions au sol et en survol)

Les constatations qui ont été faites ci-dessus sur base du L_{night} et élargies au L_{den}, s'appliquent souvent pour les fréquences de dépassements durant la période nocturne (nxL_{Amax>70,23-07u}), mais pas aux fréquences de dépassements durant la période diurne (nxL_{Amax>70,07-23u}). La grandeur nxL_{Amax>70,07-} 23u est en outre évaluée à partir d'une période qui, par opposition avec la période nocturne (23-07h), est homogène au point de vue des procédures.

^(**) possibilité de comparaison limitée en raison du taux d'activité faible (56%) pour l'ensemble des NMT 46-2 et NMT 46-1 (voir rapport annuel 2005) (***) possibilité de comparaison limitée: NMT 48-2 inactive en 2005

5.3. Comparaison des résultats de mesures des régions

Les gestionnaires des réseaux régionaux publient régulièrement des rapports ou des résultats de mesure résumés qui sont établis sur la base de leurs propres méthodes mathématiques et d'analyse pour la détermination des immissions du bruit des événements sonores corrélés aux vols.

En comparaison avec le système NMS de l'aéroport, sur base duquel les résultats précédents sont obtenus, les régions ne disposent pas des données radar détaillées pour corréler les mouvements d'avions aux événements sonores. Par contre, les administrations régionales Bruxelles Environnement-IBGE et LNE reçoivent quotidiennement, de Belgocontrol, les données de vol provenant du centre de contrôle aérien Canac à Steenokkerzeel.

Les données de vol qui viennent du 'Système Automation' (A/S) contiennent d'une part des informations concernant le vol en question (indicatif d'appel du vol ou callsign, le type de mouvement, la route et la piste utilisées) et d'autre part les heures de départ ou d'arrivée, correspondant au moment du contact avec la piste de départ ('take-off') ou d'atterrissage ('touch-down'). En comparaison avec l'information détaillée des données radar, ces heures de départ ou d'arrivée sont considérablement moins précises. Elles sont fournies avec une précision d'une minute.

La corrélation des vols, faite par les administrations régionales, est basée sur la <u>synchronisation du temps</u> d'un événement sonore enregistré avec les heures de départ ou d'arrivée fournies par Belgocontrol, en tenant compte d'un certain décalage, fonction de la distance entre la station de mesure et l'aéroport. Le principe de base appliqué pour la corrélation des vols est identique dans les deux régions. Par contre le mode d'acquisition et le traitement des données (données de vols et acoustiques) est spécifique à chacune des régions.

Les différences entre les différents réseaux opérationnels autour de l'aéroport Brussels Airport sont présentées schématiquement au tableau 13.

Les résultats analysés et publiés par les régions sont résumés dans les tableaux 14, 15, 16 et 17 et comparés aux résultats mentionnés en § 5.1, obtenus sur base d'une corrélation automatique effectuée par le système NMS de l'aéroport.

Pour les résultats des réseaux régionaux, il faut se référer aux sources suivantes :

- pour les résultats de Bruxelles Environnement IBGE: Rapport 'Evaluation des nuisances acoustiques engendrées par le trafic aérien en région de Bruxelles-Capitale. Années 2004 à 2007. (http://documentation.bruxellesenvironnement.be/documents/Rapport_bruit_avions_2004_2007_F
 R.PDF)
- pour les résultats du département Leefmilieu, Natuur en Energie (LNE): 'Jaargemiddelde gegevens 2007' publiées sur le site web du LNE (http://www.lne.be/themas/hinder-en-risicos/geluidshinder/beleid/geluidmeetnet/brussels-airport/Meetresultaten)

	EXPLOITANT DU RESEAU	
Brussels Airport	Bruxelles Environnement - IBGE	LNE

BuellaKjøer (BK) BX 3547 BYPP BYPP BR 3557C BR 4435 BR 4441 BR 4435 BR 4435 BR 4435 BR 4435 BR 4441 BR 4435 BR 4435 BR 4441 BR 4435 BR 4435 BR 4441 BR 4435 BR 4435 BR 4435 BR 4435 BR 4435 BR 4441 BR 4435 BR	NOISE MONITORING TERMINAL (NMT)						1
Section Sect		Bruëll&Kiaer (BK)		01 dB		Bruëll&Kiaer (BK))
précision (suivant IEC 60851en IEC 60804) analyseur microphone BK 4435 (HBK 2260) BK 4435 (HBK 2260) BK 4435 (HBK 2260) BK 44314 1498 (GRAS - 41 AM GRAS - 41 AM BK 4434 1498 (Bigne téléphonique (PCTN) radiomodem (GSM) 9,600 bits 4x / jour ou insertion de tension de l'ensertion de tension de l'ensertion de tension de l'insertion de l'insertion de margination de décencement durée minimum de dépassement du seuil déclenchement durée minimum de dépassement du seuil (Aug. 1s. 1 Aug. 1s. 1 Foiligiour automatic download via modern automatic download via modern suprichronisation horaire d'entre déclenchement download via modern suprichronisation horaire d'entre discinitor de la conféction de darabeackup NOISE MONTORING SYSTEM (NMS) noise monitoring software NOISE MONTORING SYSTEM (NMS) noise monitoring software Noise monitoring software BK 7802 BK 7804 BK 7802 Aug. 1s. 1 Foiligiour software BK 7804 BK 7804 BK 7802 Aug. 1s. 1 Foiligiour software Connées du traffic aérien BK 7802 Aug. 1s. 1 Foiligiour software Connées du traffic aérien BER 7802 Aug. 1s. 1 Foiligiour sesseu (timeserver) quotidien Transferent sesseu (timeserver) quotidien Transferent sesseu (timeserver) quotidien Transferent sesseu (timeserver) quotidien Aug. 1s. 1 Foiligiour réseau (ti	1		BK 3597C		Opera		
précision (suivant IEC 60804) analyseur (HSK 2260) BK 4435 (HSK 2260) BK 4435 (HSK 2260) BK 4436 (HSK 2260) BK 4437 (HSK 2260) BK 4436 (HSK 2260) BK 4436 (HSK 2260) BK 4436 (HSK 2260) BK 4436 (HSK 2260) BK 4437 (HSK 2260) BK 4436 (HSK 2260) BK 4437 (HSK 2260) BK 4436 (HSK 2260) BK 4437 (HSK 2260) BK 4436 (HSK 2260) BK 4326 (HSK 2260) BK 4436 (HSK 2260) BK 4336 (HSK 2260) BK 435 (HSK 4356 (HSK 2260) BK 4356 (HSK 4356 (HSK 2260) BK 4356 (HSK 1260 (HSK 2260) BK 4356 (HSK 1260 (HSK 2260) BK 4326 (HSK 326 (HSK 326 (HSK 326 (H	1963						= .
Surphant IEC 60851en IEC 60804 analyseur microphone BK 4435 BK4441 Symphonie Opera EX BK 4435 IEK 4250 BK4441 Symphonie Opera EX GRAS - 41 AM GRAS - 41 AM GRAS - 41 AM BK 4184 / 4198 Iligne téléphonique (PCTN) radiomodem (GSM) 9600 bits 4x / jour 1x / jour	précision	type 1	type 1	type 1	type 1	type 1	,
## BK 4435 BK 4441 Symphonie Opera EX BK 64260 BK 4184 He (FEX 260) BK 4184 4198 BK 4280 BK 4184 4198 Bigne téléphonique (PCTN) radiomodem (GSM) 9,600 bit/s 4,7 your out out insertion de tension / CIC insertion de déclenchement durée minimum de dépassament du seur Leq-15 Leq-0,5 s 10 s Leq-15 Log-10 Le	I'	77.	774	1,7,2 .	7,7-	1977	77
Class Clas	l' /	BK 4435	BK4441	Symphonie	Opera FX	BK 4435	BK4441
liaison modern liaison modern vitiesse de transmission calibration à distance automatique enregistrement des événements acoustiques seul de détection paramètre de déclenchement durée minimum de dépassement du seul NOISE MONITORING SYSTEM (MMS) noise monitoring software NOISE MONITORING SYSTEM (MMS) NOISE MONITORING SYSTEM (MMS) noise monitoring software NOISE MONITORING SYSTEM (MMS) NOISE MONITORING SYSTEM (MMS) noise monitoring software NOISE MONITORING SYSTEM (MMS) NOISE MONITORING SYSTEM (MMS) noise monitoring software NOISE MONITORING SYSTEM (MMS) NOISE MONITORING SYSTEM (MMS) noise monitoring software NOISE MONITORING SYSTEM (MMS) NOISE MONITORING SYSTEM (MMS) noise monitoring software NOISE MONITORING	analyssa.		2	Gyp	Opola ZX		
liaison modem vitiesse de transmission calibration à distance automatique délectrique délectrique délectrique enregistrement des événements acoustiques seuil de détection paramètre de déclenchement durée minimum de dépassement du seuil 10 s NOISE MONITORING SYSTEM (NMS) noise monitoring software l'agoicel d'acquisiation radar en fight capture software caractéristiques opératonnelles automatée doubload via modern synchronisation horaire fibre de databackup TRAITEMENT/ANALYSE données de base données au traffic aérien chonées de base données au traffic aérien données du traffic aérien données radar méthode de corrélation de sols principe de base tolerance selection du mouvement aérien via le rayon de corrélation via un filtre bigtique selection de l'événements acoustiques logiciel utilisé pour la corrélation BK 7804 Visual Basic applicatie Excell (MS Office) ligne téléphonique (PCTN) radiomodem (GSM) 9, 600 bits 4x / jour 1x / jou	microphone			GRAS - 41 AM	GRAS - 41 AM		
vitesse de transmission calibration à distance automatique decussique decrique enregistrement des événements acoustiques surfacile de détocino paramètre de déclenchement durée minimum de dépassement du seuli logiciel d'acquisiation radar en flight capture software caractéristiques opérationnelles automatic downicad via modern synchronisation horaire stimed databackup TRAITEMENT/ANALYSE données de base données acoustiques données du traffic aérien données radar en flight capture software données radar données radar données radar en flight capture software sprimcipe de base données du traffic aérien données radar en flight capture software données radar données radar données radar données radar sprimcipe de base selection du mouvement aérien - via la rayon de corrélation - via un filtre logique selection de frévénements acoustique logiciel utilisé pour la corrélation loui oui insertion de tension / CIC tension 1, four 1,	I i i i i i i i i i i i i i i i i i i i	2.0.1.017 1100			0.0.0		
vitesse de transmission calibration à distance automatique decussique decrique enregistrement des événements acoustiques surfacile de détocino paramètre de déclenchement durée minimum de dépassement du seuli logiciel d'acquisiation radar en flight capture software caractéristiques opérationnelles automatic downicad via modern synchronisation horaire stimed databackup TRAITEMENT/ANALYSE données de base données acoustiques données du traffic aérien données radar en flight capture software données radar données radar données radar en flight capture software sprimcipe de base données du traffic aérien données radar en flight capture software données radar données radar données radar données radar sprimcipe de base selection du mouvement aérien - via la rayon de corrélation - via un filtre logique selection de frévénements acoustique logiciel utilisé pour la corrélation loui oui insertion de tension / CIC tension 1, four 1,	liaison modem	liane téléphonique	(PCTN)	liane	GSM	liane téléphoniau	e (PCTN)
vitesse de transmission calibration à distance automatique acoustique enregistrement des événements acoustique enregistrement des événements acoustiques seuil de détection paramètre de déclaronhement durée minimum de dépassement du seuil NOISE MONITORING SYSTEM (NMS) noise monitoring software logiciel d'acquisiation radar en light capture software logiciel d'acquisiation radar en light capture software données du traffic aérien données radar evénements acoustiques evénements acoustiques evénements acoustiques devénements acoustiques devénement avec le vol libeure et du lieu trace radar comprise dans une hémisphère en rapport avec un oui oui (< 75 s) defentre temporelle: +/- 2 à 3 min (fonction de la localisation du NMT) non non non oui (trace datar comprise dans une hémisphère en rapport avec u							
calibration à distance automatique acoustique électrique enregistrement des événements acoustiques seuit de détection paramètre de déclenchement durée minimum de dépassement du seuit NOISE MONITORING SYSTEM (NMS) noise monitoring software caractéristiques opérationnelles automatic download via modern synchronisation horaire suitement download via modern synchronisation braine synchronisation braine données acoustiques données de base données acoustiques données de base données acoustiques données rader méthode de corrélation du mouvement aérien - via le rayon de corrélation - via un filtre logique selection du mouvement acrien - via le rayon de corrélation - logiciel utilisé pour la corrélation BX 7804 BK 7804 BK 7804 BK 7804 BK 7805 CDB Belgocontrol - via le rayon de corrélation - via un filtre logique selection de l'événements acoustique logiciel utilisé pour la corrélation BK 7804 BK 7804 BK 7804 BK 7804 BK 7805 CDB Belgocontrol - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation BK 7804 BK 7802 BK 78	vitesse de transmission		,		9 600 bit/s		,
acoustique enregistrement des événements acoustiques enregistrement des événements acoustiques seuil de décetion de tension / CIC déclenchement événementiel dourée minimum de dépassement du seuil 10 s							
enregistrement des événements acoustiques enregistrement des événements acoustiques déclenchement événement événement et le fension tension te		,					
enregistrement des événements acoustiques soul de déclenchement événementiel déclenchement durée minimum de déclenchement durée minimum de dépassement du seuil NOISE MONITORING SYSTEM (NMS) noise monitoring software logiciel d'acquisiation radar cata option radar en flight capture software caractéristiques opérationnelles automaté d'ownibad via modern synchronisation horaire irimed databackup TRAITEMENT/ANALYSE données de base données au traffic aérien données radar de mêthode de corrélation des vols principe de base tolerance selection du mouvement aérien - via le rayon de corrélation via le rayon de corrélation - via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation bit soul cou i (< 75 s) déclenchement événementiel déclenchement événementiel 60/65/70 LAcq. 1 s iLAeq.0.5 s 10 s l'Acq.1 s iLAeq.0.5 s 10 s BK 7802 dB32ENV (01dB) BK 7802 dB32ENV (01dB) BK 7802 s 10 significant réseau (timeserver) quotidien sur l'événement server via GPS quotidien via GPS quotidien via GPS devenements acoustiques déclenchement événementiel 60/65/70 LAcq.1 s iLAeq.0.5 s 10 s CIC: Charged Injection Calibration dBX 7802 dB32ENV (01dB) BK 7802 s 10 significant via GPS quotidien via GPS quotidien via GPS quotidien via GPS dBidocontrol A/S Belgocontrol A/S Belgocontrol A/S corrélation traces radar sur base de l'heure et du lieu trace radar comprise dans une hémisphère en rapport avec un où (< 75 s) declenchement événement événement événement événement événement sautomatique via GPS quotidien via GPS			n / CIC		1		on / CIC
enregistrement des événements acoustiques seuit de détection paramètre de déclenchement d'urée minimum de dépassement du seuit NOISE MONITORING SYSTEM (NMS) noise monitoring software logiciel d'acquisiation radar en flight capture software caractéristiques opérationnelles automatic download via modem synchronisation horaire synchronisation horaire méthode de corrélation des vols principe de base tolerance selection du mouvement aérien - via le rayon de corrélation Trace radar comprise dans une hémisphère en rapport avec un logiciel utilisé pour la corrélation BK 7804 Selection de l'événement acoustique logiciel utilisé pour la corrélation EST 75 s TRAITEMENT/ANALYSE données de base données acoustiques corrélation traces radar sur base de l'heure et du lieu trace radar comprise dans une hémisphère en rapport avec un loui oui oui (< 75 s) non (enregistrement continu) (déclenchement événementiel 605/70 LAeq.1s (BAPQ.15 (DAB) BK 7802 1 fois/jour dBModem 1 flois/jour réseau (timeserver) quotidien BK 7802 2 fois/pour dBModem 1 flois/jour réseau (timeserver) quotidien Traitement continu) (déclenchement événementiel 6066/70 LAeq.1s (BAPQ.15 (BAPQ.	0.001.1400	indertion de tenoit	117 010			Inidention de tenor	0117 010
Souli de détection paramètre de déclenchement durée minimum de dépassement du seuil NOISE MONITORING SYSTEM (NMS) noise monitoring software logiciel d'acquisiation radar data option radar afta option radar aft	enregistrement des événements acoustiques	déclenchement év	vénementiel			déclenchement é	vénementiel
LAeq.1s LAeq.0.5 s				-	,		
NOISE MONITORING SYSTEM (NMS) noise monitoring software logiciel d'acquislation radar atta option radar atta	1		LAea.0.5 s	 -			LAea.0.5 s
NOISE MONITORING SYSTEM (NMS) noise monitoring software logiciel d'acquisiation radar an flight capture software caractéristiques opérationnelles automatic download via modern synchronisation horaire timed databackup Str. 7802			oq,o.o o	_			2.104,0.00
NOISE MONTORING SYSTEM (NMS) noise monitoring software logiciel d'acquisiation radar en flight capture software caractéristiques opérationnelles automatic download via modem synchronisation horaire timed databackup STAITEMENT/ANALYSE données de base données acoustiques données du traffic aérien données radar méthode de corrélation des vols principe de base tolerance selection du mouvement aérien - via le rayon de corrélation via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation EK 7804 SK 7804 SK 7802 Consideration SK 7802 Consideration SK 7804 SK 7802 Consideration Co		1		-			
NOISE MONTORING SYSTEM (NMS) noise monitoring software logiciel d'acquisiation radar en flight capture software caractéristiques opérationnelles automatic download via modem synchronisation horaire timed databackup STAITEMENT/ANALYSE données de base données acoustiques données du traffic aérien données radar méthode de corrélation des vols principe de base tolerance selection du mouvement aérien - via le rayon de corrélation via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation EK 7804 SK 7804 SK 7802 Consideration SK 7802 Consideration SK 7804 SK 7802 Consideration Co	`	CIC: Charged Inject	on Calibration				
logiciel d'acquisiation radar et flight capture software caractéristiques opérationnelles automatic download via modem synchronisation horaire timed databackup TRAITEMENT/ANALYSE données de base données acoustiques données radar méthode de corrélation des vols principe de base lolerance selection du mouvement aérien - via le rayon de corrélation e via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation best pour la corrélation les vols logiciel utilisé pour la corrélation des vols but not filtre logique logiciel utilisé pour la corrélation des vols logiciel utilisé pour la corrélation les vols l	NOISE MONITORING SYSTEM (NMS)						
radar en flight capture software caractéristiques opérationnelles automatic download via modem synchronisation horaire timed databackup TRAITEMENT/ANALYSE données de base données acoustiques données du traffic aérien données radar méthode de corrélation des vols principe de base tolerance selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation logicie	noise monitoring software						
radar en flight capture software caractéristiques opérationnelles automatic download via modem synchronisation horaire timed databackup TRAITEMENT/ANALYSE données de base données acoustiques données du traffic aérien données radar méthode de corrélation des vols principe de base tolerance selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation logicie							
radar en flight capture software caractéristiques opérationnelles automatic download via modem synchronisation horaire timed databackup TRAITEMENT/IANALYSE données de base données acoustiques données du traffic aérien données du traffic aérien données radar méthode de corrélation des vols principe de base tolerance selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation logiciel utilisé pour la corrélation les vols pour la corrélation les vols logiciel utilisé pour la corrélation les vols earacteristiques de la localisation des vols experiments acoustiques loui (< 75 s) BERDODE REGISTRATEMENT/IANALYSE données de traffic aérien données acoustiques données du traffic aérien données du traffic aérien données du traffic aérien données radar loui leu trace radar sur base de l'heure et du lieu trace radar comprise dans une hémisphère en rapport avec un oui oui loui loui loui loui loui loui l	logiciel d'acquisiation	BK 7802		dB32ENV (01dB)		BK 7802	
caractéristiques opérationnelles automatic download via modem synchronisation horaire timed databackup TRAITEMENT/ANALYSE données de base données radar méthode de corrélation des vols principe de base tolerance - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique selection de l'événement acoustique oui (<75 s) Bis description de MModem timeserver quotidien timeserver via GPS timeserver via GPS quotidien timeserver quotidien timeserver via GPS quotidien timeserver via GPS quotidien timeserver quotidien timeserver via GPS quotidien via GPS quotidien timeserver via GPS quotidien via GPS quotidien timeserver via GPS quotidien via GPS qu	radar data option	BK 7804		-		-	
automatic download via modem synchronisation horaire timed databackup TRAITEMENT/ANALYSE données de base données de base données du traffic aérien données radar méthode de corrélation des vols principe de base tolerance selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique selection de l'événement acoustique logiciel utilisé pour la corrélation 2 fois/jour tréseau (timeserver) quotidien dBModem timeserver via GPS timeserver via GPS principe de base données acoustiques corrélation traces radar sur base de synchronisation avec le vol l'heure et du lieu trace radar comprise dans une hémisphère en rapport avec un oui oui oui oui oui oui loui oui oui selection d'événement acoustique BK 7804 Visual Basic applicatie Excell (MS Office)	radar en flight capture software	BK 7675		-		-	
TRAITEMENT/ANALYSE données de base données acoustiques données radar méthode de corrélation des vols principe de base tolerance selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique selection de l'événement acoustique selection de l'événement acoustique logiciel utilisé pour la corrélation préseau (timeserver) quotidien timeserver quotidien timeserver quotidien timeserver quotidien timeserver quotidien via GPS réseau (timeserver) quotidien févénements acoustiques Belgocontrol A/S - corrélation traces radar sur base de l'heure et du lieu trace radar comprise dans une hémisphère en rapport avec un non oui oui oui oui oui (< 75 s) Belgocontrol A/S - synchronisation avec le vol fenêtre temporelle: +/- 2 à 3 min (fonction de la localisation du NMT) non oui oui oui (< 75 s) Genêtre temporelle: +/- 2 à 3 min oui oui oui oui (< 120 s) SAS-application SAS-application	caractéristiques opérationnelles						
TRAITEMENT/ANALYSE données de base données acoustiques données du traffic aérien données radar méthode de corrélation des vols principe de base tolerance selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation logiciel utilisé pour la corrélation quotidien privau LAeq,1s Belgocontrol A/S	automatic download via modem	2 fois/jour		dBModem		1 fois/jour	
TRAITEMENT/ANALYSE données de base données du traffic aérien données radar méthode de corrélation des vols principe de base tolerance selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique selection de l'événement acoustique selection de l'événement acoustique logiciel utilisé pour la corrélation logiciel utilisé pour la corrélation lévénements acoustiques niveau LAeq,1s Belgocontrol A/S - synchronisation avec le vol synchronisation avec le vol synchronisation avec le vol l'heure et du lieu fenêtre temporelle: +/- 2 à 3 min (fonction de la localisation du NMT) non oui oui oui (< 75 s) Belgocontrol A/S - synchronisation avec le vol synchronisation avec le vol denêtre temporelle: +/- 2 à 3 min (fonction de la localisation du NMT) oui oui oui Oui (< 120 s) BK 7804 Visual Basic applicatie Excell (MS Office)	synchronisation horaire	réseau (timeserve	r)	timeserver	via GPS	réseau (timeserve	er)
données de base données du traffic aérien données radar méthode de corrélation des vols principe de base tolerance selection du mouvement aérien - via le rayon de corrélation - via un filtre logique logiciel utilisé pour la corrélation logiciel utilisé pour la corrélation données acoustiques événements acoustiques niveau LAeq,1s Belgocontrol A/S - synchronisation avec le vol synchronisation avec le vol fenêtre temporelle: +/- 2 à 3 min (fonction de la localisation du NMT) non oui oui (< 75 s) detection d'événements acoustiques belgocontrol A/S - synchronisation avec le vol fenêtre temporelle: +/- 2 à 3 min (fonction de la localisation du NMT) non oui oui (< 75 s) detection d'événements automatique Visual Basic applicatie Excell (MS Office) SAS-application	timed databackup	quotidien		quotidien		quotidien	
données de base données du traffic aérien données radar méthode de corrélation des vols principe de base tolerance selection du mouvement aérien - via le rayon de corrélation - via un filtre logique logiciel utilisé pour la corrélation logiciel utilisé pour la corrélation données acoustiques événements acoustiques niveau LAeq,1s Belgocontrol A/S - synchronisation avec le vol synchronisation avec le vol fenêtre temporelle: +/- 2 à 3 min (fonction de la localisation du NMT) non oui oui (< 75 s) detection d'événements acoustiques belgocontrol A/S - synchronisation avec le vol fenêtre temporelle: +/- 2 à 3 min (fonction de la localisation du NMT) non oui oui (< 75 s) detection d'événements automatique Visual Basic applicatie Excell (MS Office) SAS-application							
données de base données du traffic aérien données radar méthode de corrélation des vols principe de base tolerance via le rayon de corrélation - via un filtre logique logiciel utilisé pour la corrélation logiciel utilisé pour la corrélation données acoustiques événements acoustiques niveau LAeq,1s Belgocontrol A/S splegocontrol A/S synchronisation avec le vol synchronisation avec le vol fenêtre temporelle: +/- 2 à 3 min (fonction de la localisation du NMT) non oui oui (< 75 s) detection d'événements acoustiques belgocontrol A/S synchronisation avec le vol fenêtre temporelle: +/- 2 à 3 min (fonction de la localisation du NMT) non oui oui (< 75 s) detection d'événements automatique Nisual Basic applicatie Excell (MS Office) SAS-application	TRAITEMENT/ANALYSE			ı		1	
données acoustiques données du traffic aérien données radar méthode de corrélation des vols principe de base tolerance selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation logiciel utilisé pour la corrélation données acoustiques événements acoustiques Belgocontrol A/S - synchronisation avec le vol synchronisation avec le vol fenêtre temporelle: +/- 2 à 3 min (fonction de la localisation du NMT) fenêtre temporelle: +/- 2 à 3 min (fonction de la localisation du NMT) oui oui oui oui Visual Basic applicatie Excell (MS Office) Selection de l'événement acoustique SAS-application							
méthode de corrélation des vols principe de base tolerance selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation logiciel utilisé pour la corrélation données du traffic aérien données radar CDB Belgocontrol A/S - synchronisation avec le vol synchronisation avec le vol fenêtre temporelle: +/- 2 à 3 min (fonction de la localisation du NMT) non oui detection d'événements automatique NEBELGOCONTROL A/S - synchronisation avec le vol synchronisation avec le vol defetre temporelle: +/- 2 à 3 min (fonction de la localisation du NMT) non oui oui oui Visual Basic applicatie Excell (MS Office) SAS-application		événements acou	etiauee	niveau I Aea 1s		événements acou	ietiaijos
méthode de corrélation des vols principe de base tolerance selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation logiciel utilisé pour la corrélation logiciel utilisé pour la corrélation méthode de corrélation traces radar sur base de l'heure et du lieu trace radar comprise dans une hémisphère en rapport avec un lefenêtre temporelle: +/- 2 à 3 min. (fonction de la localisation du NMT) non non oui detection d'événements automatique Visual Basic applicatie Excell (MS Office) SAS-application	doimode decadaques	o venemento acco	oliquoo	111110000 127109,10		o voncincino doo	Jouquoo
méthode de corrélation des vols principe de base tolerance tolerance selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation logiciel utilisé pour la corrélation logiciel utilisé pour la corrélation principe de base corrélation traces radar sur base de l'expendent serdar sur base de l'heure et du lieu trace radar comprise dans une hémisphère en rapport avec un logiciel utilisé pour la corrélation trace radar comprise dans une hémisphère en rapport avec un logiciel utilisé pour la corrélation loui loui loui loui loui loui loui loui		CDB		Belgocontrol A/S		Belgocontrol A/S	
tolerance tolerance selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation logiciel utilisé pour la corrélation logiciel utilisé pour la corrélation corrélation traces radar sur base de l'heure et du lieu trace radar comprise dans une hémisphère en rapport avec un lémisphère en rapport avec un logiciel utilisé pour la corrélation le l'événement acoustique logiciel utilisé pour la corrélation le l'événement sautomatique logiciel utilisé pour la corrélation le la localisation avec le vol synchronisation avec le vol l'heure et du lieu trace radar comprise dans une hémitsphère temporelle: +/- 2 à 3 min. (fonction de la localisation du NMT) non oui oui via detection d'événements automatique loui (< 75 s) BK 7804 Visual Basic applicatie Excell (MS Office) SAS-application	données radar	Belgocontrol		-		-	
tolerance tolerance selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation logiciel utilisé pour la corrélation logiciel utilisé pour la corrélation corrélation traces radar sur base de l'heure et du lieu trace radar comprise dans une hémisphère en rapport avec un lémisphère en rapport avec un logiciel utilisé pour la corrélation le l'événement acoustique logiciel utilisé pour la corrélation le l'événement sautomatique logiciel utilisé pour la corrélation le la localisation avec le vol synchronisation avec le vol l'heure et du lieu trace radar comprise dans une hémitsphère temporelle: +/- 2 à 3 min. (fonction de la localisation du NMT) non oui oui via detection d'événements automatique loui (< 75 s) BK 7804 Visual Basic applicatie Excell (MS Office) SAS-application							
tolerance selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation l'heure et du lieu trace radar comprise dans une hémisphère en rapport avec un (fonction de la localisation du NMT) non oui oui oui detection d'événements automatique Non oui (< 75 s) detection d'événements automatique SAS-application Excell (MS Office)		1				1	
tolerance selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation logiciel utilisé pour la corrélation logiciel utilisé pour la corrélation trace radar comprise dans une hémisphère en rapport avec un logiciel utilisé pour la corrélation fenêtre temporelle: +/- 2 à 3 min (fonction de la localisation du NMT) non oui detection d'événements automatique Wisual Basic applicatie Excell (MS Office) SAS-application	principe de base		radar sur base de	synchronisation a	vec le vol	synchronisation a	vec le vol
hémisphère en rapport avec un selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation BK 7804 (fonction de la localisation du NMT) non oui detection d'événements automatique SAS-application Excell (MS Office)		l'heure et du lieu					
hémisphère en rapport avec un selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation BK 7804 (fonction de la localisation du NMT) non oui detection d'événements automatique SAS-application Excell (MS Office)		1 .					
selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation BK 7804 Selection de l'événements automatique Wisual Basic applicatie Excell (MS Office) SAS-application	tolerance					tenêtre temporell	e : +/- 2 à 3 min.
- via le rayon de corrélation - via un filtre logique selection de l'événement acoustique logiciel utilisé pour la corrélation BK 7804 oui non oui non oui detection d'événements automatique Visual Basic applicatie Excell (MS Office) SAS-application		némisphère en ra	pport avec un	(tonction de la loc	alisation du NMT)		
selection de l'événement acoustique oui oui oui oui oui (< 75 s) detection d'événements automatique logiciel utilisé pour la corrélation BK 7804 Visual Basic applicatie Excell (MS Office) SAS-application		1					
selection de l'événement acoustique oui (< 75 s) detection d'événements automatique logiciel utilisé pour la corrélation BK 7804 Visual Basic applicatie Excell (MS Office) SAS-application							
logiciel utilisé pour la corrélation BK 7804 Visual Basic applicatie Excell (MS Office) SAS-application	- via un tiltre logique	oui		oui		oui	
logiciel utilisé pour la corrélation BK 7804 Visual Basic applicatie Excell (MS Office) SAS-application				l		(400 .)	
logiciel utilisé pour la corrélation BK 7804 Visual Basic applicatie Excell (MS Office) SAS-application		: (. 7 5 -)					
Excell (MS Office)	selection de reveriement acoustique	oui (< 75 s)		l .	ments	oui (< 120 s)	
Excell (MS Office)	selection de revenement acoustique	oui (< 75 s)		l .	ments	oui (< 120 s)	
				automatique			
identification / moyen de contrôle automatisé vérification élargie screening limité				automatique Visual Basic appli	catie		
verification / moyer de controle aductification etargie screening limite				automatique Visual Basic appli	catie		
	logiciel utilisé pour la corrélation	BK 7804		automatique Visual Basic appli Excell (MS Office)	catie	SAS-application	

Tableau 14	· récultate	nour Ldon
Tableau 14	. resultats	pour Lucii

			Taux	Lo	den	différence
			d'activité	Brussels Airport	régions	
EXPLOITANT	NMT	LOCALISATION	[%]	NMS	GW	GW-NMS
BIM / IBGE	30	HAREN	99.9%	65.1	65.1	0.0
	31	EVERE	99.9%	57.1	57.1	0.0
LNE	40	KONINGSLO	99.9%	58.4	58.7	0.3
	41	GRIMBERGEN	99.9%	53.4	54.0	0.6
	42	DIEGEM	99.9%	70.2	70.2	0.0
	43	ERPS-KWERPS	99.5%	60.6	60.6	0.0
	44	TERVUREN	99.7%	54.8	55.3	0.5
	45	MEISE	99.6%	49.4	50.3	0.9
	46-2	WEZEMBEEK-OPPEM	99.2%	60.1	60.3	0.2
	47-2	WEZEMBEEK-OPPEM	99.0%	56.7	57.0	0.2
	48-2	BERTEM	99.8%	49.5	50.0	0.6

Tableau 15 : résultats pour Lnight

			Taux	Ln	ight	différence
			d'activité	Brussels Airport	régions	
EXPLOITANT	NMT	LOCALISATION	[%]	NMS	GW	GW-NMS
BIM / IBGE	30	HAREN	99.8%	57.1	57.2	0.1
	31	EVERE	99.8%	48.8	48.7	-0.1
LNE	40	KONINGSLO	99.9%	51.6	51.8	0.2
	41	GRIMBERGEN	99.9%	46.2	46.7	0.5
	42	DIEGEM	99.9%	62.6	62.5	0.0
	43	ERPS-KWERPS	99.5%	52.4	52.3	-0.1
	44	TERVUREN	99.6%	48.6	48.9	0.3
	45	MEISE	99.6%	42.5	43.4	0.9
	46-2	WEZEMBEEK-OPPEM	99.3%	51.8	51.9	0.1
	47-2	WEZEMBEEK-OPPEM	99.0%	50.1	50.3	0.1
	48-2	BERTEM	99.8%	41.9	42.4	0.6

Tableau 16 : résultats pour nxLAmax>70, 07-23h (période de jour)

			Taux	nxLAmax>	70, 07-23h	différence
			d'activité	Brussels	régions	
				Airport		
EXPLOITANT	NMT	LOCALISATION	[%]	NMS	GW	GW-NMS
BIM / IBGE	30	HAREN	100.0%	129.4	129.8	0.4
	31	EVERE	99.9%	37.2	36.2	-1.0
LNE	40	KONINGSLO	99.9%	41.0	45.5	4.4
	41	GRIMBERGEN	99.9%	14.8	17.9	3.1
	42	DIEGEM	100.0%	176.2	175.9	-0.3
	43	ERPS-KWERPS	99.6%	118.7	120.2	1.5
	44	TERVUREN	99.7%	11.9	16.0	4.1
	45	MEISE	99.6%	4.8	6.4	1.6
	46-2	WEZEMBEEK-OPPEM	99.2%	75.9	81.0	5.2
	47-2	WEZEMBEEK-OPPEM	99.0%	18.5	21.8	3.3
	48-2	BERTEM	99.7%	7.3	8.3	0.9

Tableau 17 : résultats pour nxLAmax>70, 23-07h (période de nuit)

			Taux	nxLAmax>	70, 23-07h	différence
			d'activité	Brussels Airport	régions	
EXPLOITANT	NMT	LOCALISATION	[%]	NMS	GW	GW-NMS
DIM / IDOE	00	Lupen				0.4
BIM / IBGE	30	HAREN	99.8%	20.8	20.9	0.1
	31	EVERE	99.8%	4.7	4.6	-0.1
LNE	40	KONINGSLO	99.9%	9.4	9.8	0.4
	41	GRIMBERGEN	99.9%	3.3	3.7	0.5
	42	DIEGEM	99.9%	29.3	29.0	-0.2
	43	ERPS-KWERPS	99.5%	14.6	14.5	-0.2
	44	TERVUREN	99.6%	4.7	5.1	0.4
	45	MEISE	99.6%	1.0	1.3	0.2
	46-2	WEZEMBEEK-OPPEM	99.3%	6.8	7.2	0.4
	47-2	WEZEMBEEK-OPPEM	99.0%	5.5	5.7	0.3
	48-2	BERTEM	99.8%	1.2	1.3	0.1

En règle générale, aussi bien pour les indicateurs L_{den} et L_{night} que pour les fréquences de dépassement $nxL_{Amax} > 70$, les valeurs publiées par les régions sont majoritairement plus élevées. Les différences sont relativement limitées.

Comme indiqué dans les rapport annuels précédents, les différences peuvent en grande partie être expliquées par une différence dans le taux de corrélation. Pour les stations de LNE, c'est le rapport entre le nombre de vols corrélés et le nombre total d'événements acoustiques enregistrés. Pour les stations gérées par Bruxelles Environnement, les événements acoustiques sont validés et corrélés (taux de corrélation = 100%) avant leur importation dans le système NMS. Les différences précises du taux de corrélation sont données dans le tableau 18.

Tableau 18 : taux de corrélation

			Taux	taux de co	orrélation	différence
			d'activité	Brussels Airport	régions	
EXPLOITANT	NMT	LOCALISATION	[%]	NMS	GW	GW-NMS
		_				
BIM / IBGE	30	HAREN	99.9%	96.6%	100.0%	3.4%
	31	EVERE	99.9%	97.3%	100.0%	2.7%
				_		
LNE	40	KONINGSLO	99.9%	74.9%	82.8%	7.9%
	41	GRIMBERGEN	99.9%	72.4%	83.6%	11.2%
	42	DIEGEM	99.9%	98.1%	97.1%	-0.9%
	43	ERPS-KWERPS	99.5%	93.1%	92.5%	-0.6%
	44	TERVUREN	99.7%	56.0%	88.6%	32.6%
	45	MEISE	99.6%	59.4%	82.4%	23.1%
	46-2	WEZEMBEEK-OPPEM	99.2%	82.9%	88.9%	6.0%
	47-2	WEZEMBEEK-OPPEM	99.0%	75.5%	85.1%	9.6%
	48-2	BERTEM	99.8%	54.9%	58.4%	3.5%

6. Conclusions

Ce rapport annuel 2007 porte sur le monitoring du bruit de l'aéroport Brussels Airport et a été réalisé grâce à la collaboration de tous les gestionnaires de bases de données et systèmes de mesure installés autour de l'aéroport.

Ce rapport a été réalisé par un groupe de travail technique. Ce groupe de travail, œuvrant sur base volontaire et en toute indépendance, assure ainsi la continuité aux travaux menés par la « Commission d'Avis » qui, à défaut de nouveau mandat, a été suspendue pour une durée indéterminée.

Le rapport de 2007 suit dans les grandes lignes le même canevas que les rapports annuels précédents (années 2005 et 2006). Les grandeurs acoustiques ont été déterminées pour chaque mois de l'année et globalement pour l'année. Les indicateurs moyens annuels ont en outre été comparés avec ceux des années précédentes 2005 et 2006. Ce qui donne une image globale de l'évolution des immissions sonores aux points de mesure considérés. Ces indicateurs (mensuels ou annuels) ne permettent pas de quantifier en détail l'impact acoustique d'éventuelles modifications appliquées aux procédures de vol, de la répartition précise du trafic sur les différentes pistes de décollages et d'atterrissages ou de la répartition des «quota-count» (QC).

Les résultats moyens annuels calculés pour les principales grandeurs acoustiques ont été comparés aux résultats calculés, obtenus dans le cadre de la détermination des contours de bruit (par Brussels Airport au moyen du modèle de calcul INM). Une comparaison a également été établie entre les grandeurs acoustiques évaluées dans le rapport, qui résultent du traitement automatique réalisé par le système NMS de Brussels Airport, avec celles fournies par les régions, qui sont obtenues sur base d'un traitement et d'une analyse spécifique et autonome.

Surveillance du bruit – Brussels Airport

Rapport annuel 2007

Annexes

Surveillance du bruit – Brussels Airport

Rapport annuel 2007

Annexe A

A.1 Analyse de l'utilisation des pistes en 2007

ANALYSE DES DONNEES DE TRAFFIC AERIEN

période: 01.01.2007 07h - 01.01.2008 07h source: Central Database (CDB)

période d'observation:

valeurs 24h (tous les mouvements)

MOIS	Ī	DECOLLAGES								ATT	ERRISSA	GES			TOTAL	
	Ī	25R	25L	20	02	07L	07R	Tot.	25R	25L	20	02	07L	07R	Tot.	•
janvier	Ī	8455	16	594	120	57	524	9766	2767	6151	142	654	3	0	9717	19483
février		8346	21	657	40	50	307	9421	2797	5902	317	412	0	0	9428	18849
mars		7687	14	695	332	286	1867	10881	2633	5529	472	2153	10	121	10918	21799
avril		6300	27	411	395	271	3181	10585	2085	4749	54	3642	18	0	10548	21133
mai		8793	20	708	156	394	1710	11781	2767	6543	226	1937	15	277	11765	23546
juin		9507	23	713	64	92	1294	11693	3353	6975	12	1384	4	0	11728	23421
juillet		10283	45	1038	10	57	436	11869	3460	7791	142	344	94	0	11831	23700
aôut		8920	34	1132	61	110	936	11193	3303	6681	235	936	63	1	11219	22412
septembre		9865	63	849	64	117	915	11873	3181	7608	66	993	6	1	11855	23728
octobre		9231	77	656	188	195	1589	11936	2898	7073	100	1818	37	26	11952	23888
novembre		10181	7	524	5	62	368	11147	3057	7494	283	324	4	1	11163	22310
décembre		7709	16	898	89	135	1186	10033	2724	5758	293	1214	56	19	10064	20097
TOTAL ANNUEL	Ī	105277	363	8875	1524	1826	14313	132178	35025	78254	2342	15811	310	446	132188	264366
	Ī	79.6%	0.3%	6.7%	1.2%	1.4%	10.8%	100.0%	26.5%	59.2%	1.8%	12.0%	0.2%	0.3%	100.0%	•

période d'observation:

période de jour 07-23h

MOIS
janvier
février
mars
avril
mai
juin
juillet
aôut
septembre
octobre
novembre
décembre
TOTAL ANNUEL

		DE	COLLAG	ES			ATTERRISSAGES							TOTAL
25R	25L	20	02	07L	07R	Tot.	25R	25L	20	02	07L	07R	Tot.	
7684	4	412	111	29	453	8693	2027	5894	103	553	3	0	8580	17273
7642	8	526	40	10	242	8468	2040	5706	238	359	0	0	8343	16811
7091	6	497	321	212	1652	9779	1854	5215	362	2019	10	121	9581	19360
5499	5	219	371	177	2892	9163	1424	4327	1	3365	18	0	9135	18298
7601	5	518	151	341	1576	10192	1961	5993	188	1797	15	277	10231	20423
8346	3	499	61	52	1194	10155	2407	6486	1	1294	4	0	10192	20347
9088	14	733	8	19	346	10208	2360	7174	107	292	94	0	10027	20235
7729	5	849	61	48	814	9506	2227	6160	134	884	63	1	9469	18975
8794	31	625	58	57	793	10358	2284	7102	22	922	6	1	10337	20695
8167	62	468	186	145	1437	10465	2053	6545	70	1693	37	26	10424	20889
9245	4	304	5	20	278	9856	2189	7101	210	311	4	1	9816	19672
6953	3	740	79	95	1085	8955	2075	5388	256	1089	56	19	8883	17838
93839	150	6390	1452	1205	12762	115798	24901	73091	1692	14578	310	446	115018	230816
81.0%	0.1%	5.5%	1.3%	1.0%	11.0%	100.0%	21.6%	63.5%	1.5%	12.7%	0.3%	0.4%	100.0%	

période d'observation: période de nuit 23-07h ('night')

MOIS
janvier
février
mars
avril
mai
juin
juillet
aôut
septembre
octobre
novembre
décembre
TOTAL ANNUEL

		DE	COLLAG	ES					ATT	ERRISSA	GES			TOTAL
25R	25L	20	02	07L	07R	Tot.	25R	25L	20	02	07L	07R	Tot.	
771	12	182	9	28	71	1073	740	257	39	101	0	0	1137	2210
704	13	131	0	40	65	953	757	196	79	53	0	0	1085	2038
596	8	198	11	74	215	1102	779	314	110	134	0	0	1337	2439
801	22	192	24	94	289	1422	661	422	53	277	0	0	1413	2835
1192	15	190	5	53	134	1589	806	550	38	140	0	0	1534	3123
1161	20	214	3	40	100	1538	946	489	11	90	0	0	1536	3074
1195	31	305	2	38	90	1661	1100	617	35	52	0	0	1804	3465
1191	29	283	0	62	122	1687	1076	521	101	52	0	0	1750	3437
1071	32	224	6	60	122	1515	897	506	44	71	0	0	1518	3033
1064	15	188	2	50	152	1471	845	528	30	125	0	0	1528	2999
936	3	220	0	42	90	1291	868	393	73	13	0	0	1347	2638
756	13	158	10	40	101	1078	649	370	37	125	0	0	1181	2259
11438	213	2485	72	621	1551	16380	10124	5163	650	1233	0	0	17170	33550
69.8%	1.3%	15.2%	0.4%	3.8%	9.5%	100.0%	59.0%	30.1%	3.8%	7.2%	0.0%	0.0%	100.0%	

période d'observation:

période de jour 06-23h

MOIS
janvier
février
mars
avril
mai
juin
juillet
aôut
septembre
octobre
novembre
décembre
TOTAL ANNUEL
ĺ

		DE	COLLAG	ES					ATT	ERRISSA	GES			TOTAL
25R	25L	20	02	07L	07R	Tot.	25R	25L	20	02	07L	07R	Tot.	
7957	5	432	113	30	465	9002	2044	5950	103	559	3	0	8659	17661
7906	11	544	40	10	242	8753	2061	5747	244	359	0	0	8411	17164
7389	8	523	327	213	1717	10177	1872	5303	364	2027	10	121	9697	19874
6028	5	249	380	178	2975	9815	1442	4386	1	3374	18	0	9221	19036
8318	7	572	151	341	1599	10988	1982	6056	190	1799	15	277	10319	21307
9061	3	544	64	52	1220	10944	2426	6530	1	1296	4	0	10257	21201
9830	15	799	10	19	364	11037	2375	7246	107	293	94	0	10115	21152
8514	5	928	61	48	814	10370	2253	6218	138	884	63	1	9557	19927
9513	31	679	58	57	801	11139	2303	7165	22	923	6	1	10420	21559
8735	64	528	188	145	1497	11157	2104	6616	70	1701	37	26	10554	21711
9762	4	320	5	20	278	10389	2205	7183	210	312	4	1	9915	20304
7323	3	769	79	95	1108	9377	2098	5468	256	1097	56	19	8994	18371
100336	161	6887	1476	1208	13080	123148	25165	73868	1706	14624	310	446	116119	239267
81.5%	0.1%	5.6%	1.2%	1.0%	10.6%	100.0%	21.7%	63.6%	1.5%	12.6%	0.3%	0.4%	100.0%	

période d'observation: période de nuit 23-06h

MOIS			DE	COLLAG	ES					ATT	ERRISSA	GES			TOTAL
	25R	25L	20	02	07L	07R	Tot.	25R	25L	20	02	07L	07R	Tot.	
janvier	498	11	162	7	27	59	764	723	201	39	95	0	0	1058	1822
février	440	10	113	0	40	65	668	736	155	73	53	0	0	1017	1685
mars	298	6	172	5	73	150	704	761	226	108	126	0	0	1221	1925
avril	272	22	162	15	93	206	770	643	363	53	268	0	0	1327	2097
mai	475	13	136	5	53	111	793	785	487	36	138	0	0	1446	2239
juin	446	20	169	0	40	74	749	927	445	11	88	0	0	1471	2220
juillet	453	30	239	0	38	72	832	1085	545	35	51	0	0	1716	2548
aôut	406	29	204	0	62	122	823	1050	463	97	52	0	0	1662	2485
septembre	352	32	170	6	60	114	734	878	443	44	70	0	0	1435	2169
octobre	496	13	128	0	50	92	779	794	457	30	117	0	0	1398	2177
novembre	419	3	204	0	42	90	758	852	311	73	12	0	0	1248	2006
décembre	386	13	129	10	40	78	656	626	290	37	117	0	0	1070	1726
TOTAL ANNUEL	4941	202	1988	48	618	1233	9030	9860	4386	636	1187	0	0	16069	25099
	54.7%	2.2%	22.0%	0.5%	6.8%	13.7%	100.0%	61.4%	27.3%	4.0%	7.4%	0.0%	0.0%	100.0%	•

période d'observation: période de jour 07-19h ('day')

MOIS			DE	COLLAG	ES					ATT	ERRISSA	GES			TOTAL
	25R	25L	20	02	07L	07R	Tot.	25R	25L	20	02	07L	07R	Tot.	
janvier	5672	4	377	91	26	391	6561	1520	4408	103	470	3	0	6504	13065
février	5769	7	436	40	9	127	6388	1569	4357	224	238	0	0	6388	12776
mars	5329	6	443	252	177	1187	7394	1463	3946	235	1505	9	98	7256	14650
avril	4102	4	215	266	150	2116	6853	1106	3209	1	2523	16	0	6855	13708
mai	5688	5	504	117	277	1173	7764	1552	4350	188	1292	14	226	7622	15386
juin	6353	3	418	30	45	833	7682	1871	4843	1	914	3	0	7632	15314
juillet	6624	14	663	8	16	260	7585	1943	5231	65	203	94	0	7536	15121
aôut	5572	5	729	54	45	611	7016	1782	4488	87	654	60	1	7072	14088
septembre	6500	31	578	45	49	662	7865	1816	5086	21	767	6	1	7697	15562
octobre	5927	62	432	139	131	1195	7886	1633	4675	70	1353	37	26	7794	15680
novembre	6749	4	251	5	20	274	7303	1749	5225	116	300	4	1	7395	14698
décembre	5245	2	646	26	80	757	6756	1664	4088	157	752	55	19	6735	13491
TOTAL ANNUEL	69530	147	5692	1073	1025	9586	87053	19668	53906	1268	10971	301	372	86486	173539
	79.9%	0.2%	6.5%	1.2%	1.2%	11.0%	100.0%	22.7%	62.3%	1.5%	12.7%	0.3%	0.4%	100.0%	

période d'observation: période de soir 19-23h ('evening')

MOIS			DE	COLLAG	ES					ATT	ERRISSA	GES			TOTAL
	25R	25L	20	02	07L	07R	Tot.	25R	25L	20	02	07L	07R	Tot.	
janvier	2012	0	35	20	3	62	2132	507	1486	0	83	0	0	2076	4208
février	1873	1	90	0	1	115	2080	471	1349	14	121	0	0	1955	4035
mars	1762	0	54	69	35	465	2385	391	1269	127	514	1	23	2325	4710
avril	1397	1	4	105	27	776	2310	318	1118	0	842	2	0	2280	4590
mai	1913	0	14	34	64	403	2428	409	1643	0	505	1	51	2609	5037
juin	1993	0	81	31	7	361	2473	536	1643	0	380	1	0	2560	5033
juillet	2464	0	70	0	3	86	2623	417	1943	42	89	0	0	2491	5114
aôut	2157	0	120	7	3	203	2490	445	1672	47	230	3	0	2397	4887
septembre	2294	0	47	13	8	131	2493	468	2016	1	155	0	0	2640	5133
octobre	2240	0	36	47	14	242	2579	420	1870	0	340	0	0	2630	5209
novembre	2496	0	53	0	0	4	2553	440	1876	94	11	0	0	2421	4974
décembre	1708	1	94	53	15	328	2199	411	1300	99	337	1	0	2148	4347
TOTAL ANNUEL	24309	3	698	379	180	3176	28745	5233	19185	424	3607	9	74	28532	57277
	84.6%	0.0%	2.4%	1.3%	0.6%	11.0%	100.0%	18.3%	67.2%	1.5%	12.6%	0.0%	0.3%	100.0%	•

période d'observation: l'heure du matin 06-07h

MOIS			DE	COLLAG	ES					ATT	ERRISSA	GES			TOTAL
	25R	25L	20	02	07L	07R	Tot.	25R	25L	20	02	07L	07R	Tot.	
janvier	273	1	20	2	1	12	309	17	56	0	6	0	0	79	388
février	264	3	18	0	0	0	285	21	41	6	0	0	0	68	353
mars	298	2	26	6	1	65	398	18	88	2	8	0	0	116	514
avril	529	0	30	9	1	83	652	18	59	0	9	0	0	86	738
mai	717	2	54	0	0	23	796	21	63	2	2	0	0	88	884
juin	715	0	45	3	0	26	789	19	44	0	2	0	0	65	854
juillet	742	1	66	2	0	18	829	15	72	0	1	0	0	88	917
aôut	785	0	79	0	0	0	864	26	58	4	0	0	0	88	952
septembre	719	0	54	0	0	8	781	19	63	0	1	0	0	83	864
octobre	568	2	60	2	0	60	692	51	71	0	8	0	0	130	822
novembre	517	0	16	0	0	0	533	16	82	0	1	0	0	99	632
décembre	370	0	29	0	0	23	422	23	80	0	8	0	0	111	533
TOTAL ANNUEL	6497	11	497	24	3	318	7350	264	777	14	46	0	0	1101	8451
	88.4%	0.1%	6.8%	0.3%	0.0%	4.3%	100.0%	24.0%	70.6%	1.3%	4.2%	0.0%	0.0%	100.0%	

ANALYSE DES DONNEES DE TRAFFIC AERIEN

période: 01.01.2007 07h - 01.01.2008 07h source: Central Database (CDB)

période d'observation: période de nuit 23-06h

période d'observation: période de jour 06-23h

SID				LAGES			TOTAL
CIV1C	25R 214	25L	20	02	07L	07R	214
CIV1C CIV1E	0 2	1	0	0	0	0	1 2
CIV1E CIV2Q	0	28	0	0	0	0	28
CIV4J CIV4J	0	0	0	0	1	0	1
CIV4J CIV7D	0 1063	0 0	0	0	0	404 0	404 1063
CIV7L	0	0	57	0	0	0	57
DENUT2N DENUT3C	0 834	0 0	97 0	0	0	0	97 834
DENUT3C DENUT3L	0	8	0 1	0	0	0	8 1
DENUT4H	0	0	0	0	0 203	0	203
DENUT4H DENUT5F	0	0	0	0 23	0	17	17
HELEN2N	0	0 0	0 25	0	0	0	23 25
HELEN3C HELEN3C	470 0	0 7	0	0	0	0	470 7
HELEN4H	0	0	0	0	154	0	154
HELEN4H HELEN5F	0	0	0	0 15	0	5 0	5 15
KOK2C	6	0	0	0	0	0	6
LNO2C LNO2H	5 0	0	0	0	0 1	0	5 1
LNO2J	0	0	0	0	0	145	145
LNO2Q LNO3Z	0 269	8 0	0	0	0	0	8 269
LNO4L	0	0	307	0	0	0	307
NIK1H NIK1H	0	0	0	0	247 0	0 11	247 11
NIK2C	6	0	0	0	0	0	6
NIK2C NIK2F	0	47 0	0	0 10	0	0	47 10
NIK2L	0	0	1	0	0	0	1
NIK2N NIK4Z	0 858	0 0	90 0	0	0	0	90 858
PITES3C	3	0	0	0	0	0	3
PITES3C PITES3J	0	6 0	0	0	0	0 115	6 115
PITES3L	0	0	26	0	0	0	26
PITES3N PITES3Z	0 203	0 0	214 0	0	0	0	214 203
ROUSY ROUSY3C	0 8	1 0	0	0	0	0	1 8
ROUSY3C	0	35	0	0	0	0	35
ROUSY3J ROUSY3L	0	0	0 26	0	0	163 0	163 26
ROUSY3N	0	0	213	0	0	0	213
ROUSY3Z SOPOK2H	221 0	0 0	0	0	0 12	0	221 12
SOPOK2J	0	0	0	0	0	349	349
SOPOK2L SOPOK3C	0 68	0 0	872 0	0	0	0	872 68
SOPOK3C	0	58	0	0	0	0	58
SOPOK3D SOPOK4Z	1 598	0	0	0	0	0	1 598
SPI2C	6	0	0	0	0	0	6
SPI2D SPI2J	1 0	0	0	0	0	0 22	1 22
SPI2Q	0	3	0	0	0	0	3
SPI3L SPI4Z	0	0	57	0	0	0	57
NO SID	42 63	0	0 2	0	0	0 2	42 67
						1	
TOTAL	4941	202	1988	48	618	1233	9030

oin			DECC:	1050			TO
SID	25R	25L	DECOLL.	AGES 02	07L	07R	TOTAL
CIV1C CIV1C	15115 0	0	0	0	0	0	15115 16
CIV1C CIV1E	4072	16 0	0	0	0	0	16 4072
CIV1E	0	10	0	0	0	0	10
CIV1E CIV4H	0	0	0	1 0	0 41	0	1 41
CIV4H CIV4J	0	0	0	0	73	0	73
CIV4J	0	0	0	0	0	2928	2928
CIV6F CIV7D	0 4	0	0	56	0	0	56 4
CIV7D CIV7L	0	0	1908	0	0	0	1908
DENUT2N	0	0	17	0	0	0	17
DENUT3C	8395	0 38	0	0	0	0	8395
DENUT3C DENUT3L	0	0	0 349	0	0	0	38 349
DENUT4H	0	0	0	0	82	0	82
DENUT4H	0	0	0	0	0	816	816
DENUT5F ELSIK1H	0	0	0	422 0	0 1	0	422 1
ELSIK1H	0	0	0	0	0	1	1
ELSIK1L	0 23	0	1 0	0	0	0	1 23
ELSIK2C ELSIK2D	3	0	0	0	0	0	3
HELEN2N	0	0	38	0	0	0	38
HELEN3C	9391	0	0	0	0	0	9391
HELEN3C HELEN3L	0	8	0 531	0	0	0	8 531
HELEN4H	0	0	0	0	76	0	76
HELEN4H	0	0	0	0	0	1014	1014
HELEN5F KOK1F	0	0	0	487 17	0	0	487 17
KOK1H	0	0	0	0	7	0	7
KOK1H	0	0	0	0	0	49	49
KOK2C KOK4L	585 0	0	0 28	0	0	0	585 28
LNO2C	3391	0	0	0	0	0	3391
LNO2D	81	0	0	0	0	0	81
LNO2H LNO2J	0	0	0	0	49 1	0	49 1
LNO2J	0	0	0	0	0	626	626
LNO2Q LNO3F	0	5	0	0 2	0	0	5 2
LNO3Z	4	0	0	0	0	0	4
LNO4L	0	0	112	0	0	0	112
NIK1H NIK1H	0	0	0	0	105 0	0 1135	105 1135
NIK2C	10491	0	0	0	0	0	10491
NIK2C	0	8	0	0	0	0	8
NIK2F NIK2L	0	0	0 358	382 0	0	0	382 358
NIK2L NIK2N	0	0	25	0	0	0	25
PITES3C	1443	0	0	0	0	0	1443
PITES3C PITES3D	0 1	2	0	0	0	0	2 1
PITES3B	0	0	0	9	0	0	9
PITES3H	0	0	0	0	8	0	8
PITES3J PITES3J	1 0	0	0	0	0	0 225	1 225
PITES3L	ő	0	485	0	0	0	485
ROUSY3C	9672	0	0	0	0	0	9672
ROUSY3C ROUSY3D	0 20	14 0	0	0	0	0	14 20
ROUSY3F	0	0	0	23	0	0	23
ROUSY3H ROUSY3J	0 1	0	0	0	53 0	0	53 1
ROUSY3J	0	0	0	0	0	1418	1418
ROUSY3L	0	0	746	0	0	0	746
ROUSY3Z SOPOK2C	1 2	0	0	0	0	0	1 2
SOPOK2H	0	0	0	0	522	0	522
SOPOK2J	0	0	0	0	0	3833	3833
SOPOK2L SOPOK3C	0 26974	0	1824 0	0	0	0	1824 26974
SOPOK3C	0	42	0	0	0	0	42
SOPOK3D	1195	0	0	0	0	0	1195
SOPOK3D SOPOK3F	0	1 0	0	0 52	0	0	1 52
SOPOK4Z	10	0	0	0	0	0	10
SPI2C	7149	0	0	0	0	0	7149
SPI2D SPI2J	110 0	0	0	0	0	0 973	110 973
SPI2J SPI2Q	0	9	0	0	0	0	9/3
SPI3F	0	0	0	12	0	0	12
SPI3H SPI3L	0	0	0 376	0	70 0	0	70 376
SPI3L SPI4Z	1	0	0	0	0	0	1
NO SID	2201	8	89	13	120	62	2493
TOTAL	100336	161	6887	1476	1208	13080	123148
<u> </u>	81.5%	0.1%	5.6%	1.2%	1.0%	10.6%	100.0%

ANALYSE DES DONNEES DE TRAFFIC AERIEN

période: 01.01.2007 07h - 01.01.2008 07h source: Central Database (CDB)

période d'observation: période de nuit 23-06h

période d'observation: période de jour 06-23h

ICAO	N	Q		ICAO	N	Q			ICAO	N		С	IC.	AO	N	Q		ICAO	N		C
B752	8254	QCD 2.7	QCA 4.0	C500	2	QCD 1.0	QCA 1.0	-	RJ85	26461	QCD 1.4	QCA 2.1	VL	(40	95	QCD 0.4	QCA 0.9	EC30	6	QCD 1.0	QCA 1.0
A30B	5381	10.2	6.1	DC10	2	1.0	15.7		RJ1H	21086	1.6	2.3		EX	91	1.2	0.9	EC55	6	0.7	0.7
A320	1782	3.6	1.5	E121	2		1.0		A319	20881	2.0	1.1		180	85	0.9	0.9	IL62	6	38.0	7.2
B734	1514	3.1	4.0	GL5T	2	1.0	1.0		A320	20550	3.3	1.5		750	84	8.0	0.9	SR22	6	1.0	1.0
A319 B733	1035 943	1.9 1.9	1.1 3.6	H25C L188	2	1.0 6.1	1.0 1.8		B734 B733	14866 12435	2.9 2.0	3.9 3.7		160 650	82 77	0.0 1.3	0.0	A743 B722	5 5	3.1 11.0	1.0 2.8
B738	928	3.4	1.7	PC12	2	1.0	1.0		B462	10233	1.3	1.5		54	70	13.2	6.3	A748	4	9.2	8.7
ATP	581	0.9	1.9	R44	2		1.0		CRJ2	7619	0.9	1.0		D90	68	1.3	1.0	B712	4	1.2	1.0
MD11	534	11.7	10.5	TBM7	2	0.4	1.0		B735	7266	1.7	3.6		3M7	68	0.9	0.9	B721	4	10.8	2.7
T204 A321	514 513	5.5 4.3	4.0 1.4	A743 AN26	1	3.1	0.0		A321 B738	7107 6937	4.6 3.4	1.6 1.8		01 \46	59 58	21.3 0.9	6.3 0.9	B739 B74S	4	3.2 58.9	1.7 8.1
A333	362		2.8	AN28	1		1.0		E145	5043	0.9	0.9	B0		55	1.0	1.0	BE35	4	1.0	1.0
MD82	354	6.2	1.0	AS65	1	1.0			B763	4994	8.3	2.9		732	54	6.8	2.0	BK17	4	1.0	1.0
RJ1H B763	283 234	1.6	2.3	AT43 AT45	1	1.0 1.0			E135 MD82	4985 4436	0.9	1.0 1.0		.30 \34	54 54	0.8 1.0	0.8 1.0	C206 C340	4	1.0 1.0	1.0 1.0
EXPL	198	7.3 0.9	2.7 0.9	AT72	1	1.0			F50	4425	5.9 0.9	1.6		RM1	51	1.0	0.9	C421	4	1.0	1.0
B735	178	2.0	3.8	B06	1		1.0		B736	3061	1.5	1.5		30	50	1.0	1.0	DC86	4	31.5	6.1
RJ85	177	1.4	2.1	B703	1				B752	2873	3.2	3.1		C93	49	12.9	8.7	DHC6	4	1.0	1.0
B462 F50	115 109	1.4 1.0	1.5 1.7	B722 B741	1	9.0 72.4			B737 F100	2673 2542	2.0 1.6	1.5 1.0		C20 S55	48 46	0.9 0.9	0.9 0.9	F260 FA7X	4	1.0 1.6	1.0 1.0
CRJ2	87	1.0	1.0	C152	1	12.4	1.0		B744	2321	23.9	8.7		32	46	1.0	1.0	GLF3	4	0.0	0.0
F100	69	1.7	1.0	C17	1				D328	2287	0.9	1.1		55	45	1.8	1.0	IL96	4	35.1	10.5
A310	57	8.7	4.4	C650	1	2.6			F70	2284	1.1	1.0		743	44	46.1	11.9	K35E	4		
B744 C130	53 47	21.9 11.9	7.8 2.4	DC87 DC93	1	12.9	2.8		JS41 EXPL	2111 1944	1.0 0.9	0.9 0.9		N26 D88	43 42	1.4 6.8	0.8 1.2	M20P S76	4	1.0 1.0	1.0 1.0
LJ45	46	1.0	0.9	DH8D	1	12.9			B742	1873	55.7	11.9		V35	42	1.1	1.0	SR20	4	1.0	1.0
C56X	42	0.9	0.8	EC35	1		1.0		A333	1709	9.6	2.8		109	39	0.9	0.9	ATP	3	1.0	2.5
E145	37	1.0	1.0	FA10	1	0.0			AT45	1697	1.0	1.0	R4		38	1.0	0.9	C414	3	1.0	1.0
C560	34	0.7	0.9	GALX IS/1	1	1.0			MD11	1403	11.0	11.0		9T	35 35	0.9	0.8	PAY1	3	1.0	1.0
BE20 F900	30 30	0.8 1.0	0.8 1.0	JS41 LJ31	1	1.1 1.0			C130 CRJ9	1372 1240	11.3 1.3	2.4 1.0	C1 LJ		35 35	0.0 0.7	0.0 0.7	SBR1 A139	2	2.2 1.0	1.0 1.0
MD83	29	7.9	1.0	LJ55	1		1.0		C56X	1206	0.9	0.9		235	33	0.9	0.9	A342	2	10.0	2.1
CL60	28	1.0	1.0	PA31	1	1.0			CRJ7	1182	1.3	1.0		58	32	1.0	1.0	A345	2	8.9	1.0
E135 C525	28 26	0.9 1.0	1.0	PA46 PAY1	1	1.0	1.0		A332 E170	988 981	9.7	2.3 1.2		16T 131	32 31	0.5 0.8	0.5 0.8	A346	2 2	8.9 1.0	1.0 1.0
F2TH	24	1.6	1.0 0.9	PRM1	1	0.0			SW4	949	2.0 0.9	0.9		703	29	55.0	4.9	AEST AN72	2	3.3	2.7
A332	21	7.9	2.3	SBR1	1	2.2			B773	871	10.5	4.5		125	29	0.8	0.8	B407	2	1.0	1.0
GLF4	18	8.0	8.0	SC7	1		1.0		MD87	860	4.5	1.0	E1		28	0.9	8.0	BA11	2	6.5	1.0
PAY3 C550	18 17	0.7 0.8	0.8 0.7	SW3 VC10	1	1.0			DC10 MD81	852 838	19.7 4.8	15.5 1.0		AY3 ALX	28 27	0.9 1.0	0.8 1.0	BE99	2 2	0.0 1.0	0.0 1.0
FA20	17	1.6	0.7	YK40	1				LJ45	834	0.9	0.9		STR	26	0.9	1.0	C210 C310	2	1.0	1.0
MD90	16	1.4	1.0		'				A310	780	8.0	3.4		Г43	25	1.0	1.9	C337	2	1.0	1.0
B736	15	2.0	1.4						F900	741	0.9	0.9	B4		24	1.0	1.4	C510	2	1.0	1.0
B737 FA50	14 14	2.2 1.8	1.5 1.5						A30B AT72	736 663	10.3 0.7	6.1 0.7	H6 SC		24 24	0.7 0.7	0.7 0.7	COL3 F27	2 2	0.0 2.1	0.0 1.0
GLF5	14	1.0	1.0						F2TH	652	1.4	1.0		365	23	1.0	1.0	GLF2	2	0.0	0.0
H25B	14	1.0	1.4						CL60	648	0.9	0.9		30J	22	10.8	2.4	H269	2	1.0	1.0
C25A	13	0.6	0.6						C550	639	0.9	0.9		442	22	0.6	0.6	LJ40	2	0.0	0.0
C425 BE9L	13 11	0.9 0.7	0.8 1.0						C560 BE20	638 629	0.9 0.9	0.9 0.9		-34 501	21 20	0.9 0.9	1.0 0.9	M20T MU2	2 2	1.0 1.0	1.0 1.0
C750	10	1.0	0.9						A318	616	1.3	1.0		JMA	20	1.0	1.0	PA30	2	1.0	1.0
F70	10	0.7	1.0						H25B	606	1.0	1.2		41	19	64.9	11.7	PA32	2	1.0	1.0
LJ60	10	1.0	1.0						B190	578	0.9	0.9	JS		18	1.0	1.0	PAY4	2	1.0	1.0
B463	9	1.4	1.4						B772	551	6.6	2.7		N28	17	1.0	1.0	PTS2	2 2	1.0	1.0
LJ35 B190	8	0.8 0.7	0.8 0.8						CRJ1 SB20	482 449	1.0 0.9	1.0 0.9	SV H2	v3 25C	17 16	1.0 1.0	1.0 1.0	S601 SH36	2	1.0 1.0	1.0 1.1
D328	7	0.8	1.2						FA20	445	0.5	0.4		204	16	5.6	4.0	TOBA	2	1.0	1.0
SW4	7	0.8	0.3						C525	396	0.9	0.9		V12	15	10.9	7.0	TRIN	2	1.0	1.0
C340 C404	6	1.0	1.0 1.0						GLF4 MD83	374 363	0.9	0.9		H8C L5T	14	1.1 0.9	2.1	UH1	2	1.0	1.0
J328	6	1.0 1.0	0.8						MD52	363 346	7.9 1.0	1.0 1.0		_51 \Y2	14 13	0.9	0.6	C152 VC10	1	1.0	
MD88	6		1.1						LJ60	342	0.9	0.9	A1	124	12	87.4	12.2				
A306	5	9.8	3.8						DH8D	331	1.0	1.1		343	12	10.2	2.0				
B762 B772	5 5	9.2	7.3 3.5						B463 FA50	317 316	1.7 1.7	1.5 1.7		.O3 C87	12 11	0.7 8.4	0.7 2.8				
BE40	5	1.0	1.0						BE40	312	0.9	0.9		350	10	1.0	1.0				
C25B	5	1.0	0.7						B764	308	7.9	3.0	C5	500	10	1.0	1.0				
C414	5	1.0	1.0						C25A	305	0.8	0.8		088	10	0.6	0.6				
E170 L101	5 5		1.3 6.3						GLF5 PC12	291 280	1.2 0.9	0.9 0.9		228	10 10	0.4 1.0	0.4 1.0				
SB20	5	0.7	1.0						J328	244	1.0	1.0	L4		10	0.8	0.8				
B742	4	57.7							A306	195	9.3	3.7	C2	208	8	0.0	0.0				
BE9T	4	4.0	1.0						B350	194	0.9	0.9		104	8	1.0	1.0				
C441 CRJ9	4	1.0 1.3	1.0 0.9						B762 BE9L	194 173	6.0 0.9	3.1 0.9		141 U30	8 8	0.8 0.8	0.8 0.8				
MD87	4	4.4	1.0						C182	156	1.0	1.0		28T	8	1.0	1.0				
AN12	3	8.7	7.3						E190	144	2.5	0.9	T1	34	8	25.1	5.4				
GLEX	3	1.2	1.0						FA10	143	0.9	1.0		.02	6	0.7	0.7				
P180 PAY2	3	1.0 1.0	1.0 1.0						P68 LJ35	142 139	0.9 0.9	0.9 0.9		N30 105	6 6	0.0 1.0	0.0 1.0				
SF34	3	1.0	0.7						C25B	135	0.9	0.9		172	6	1.0	1.0				
B350	2		1.0		L				C551	102	0.9	0.9	C2	295	6	1.1	1.0				
B732	2		2.1	TOT	25099	5.2	3.5		RJ70	102	1.1	2.2	E3	BTF	6			TOT	239268	3.2	2.2

QCD quota de bruit (QC) moyen au décollage de tous les décollages effectués sur Brussels Airport en 2005 pendant la période d'observation QCA quota de bruit (QC) moyen à l'atterrissage de tous les atterrissages effectués sur Brussels Airport en 2005 pendant la période d'observation

Surveillance du bruit – Brussels Airport

Rapport annuel 2007

Annexe B

Number of day flights per SID for the period 1/01/2007 - 31/12/2007 Considered are only departures flights during the day. Helicopters and missed approaches are excluded

	62 1099 092 15133 070 408* 10 4* 241 300* 55 98 1900 3 11 728 8434 45 34* 99 899 27 422 1 2
CIVIC 1171 1153 1127 925 1308 1323 1610 1556 1307 1255 1306 CIVIE 314 304 259 290 279 451 429 285 486 320 394 CIVIE 1 2 7 5 8 1 1 2 8 8 30 CIVIE 1 2 101 142 101 42 419 699 418 231 82 184 188 340 56 CIVIE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	092 1513: 270 408: 10 4: 10 4: 241 300: 5: 198 190: 3 11: 228 843: 45 34: 99 89: 27 42:
CIVIE	270 408 10 44 10 44 300 50 198 190 3 17 728 843 45 344 99 89 27 422 1 5
CIVAL 101	241 300° 50° 198 1900° 3 11° 728 843° 45 34° 99 89° 27 42° 1
CIVIF	198 1906 3 117 28 843 45 344 99 897 27 422
CIV/TD	198 1908 3 1728 8434 45 344 99 89 27 422
CIVIT	98 1900 3 17 728 8437 45 344 99 897 27 422
DENUTZN	3 17 728 8434 45 344 99 897 27 422 1 2
DENUT3C 697 654 635 483 664 753 753 650 743 757 917 DENUT3L	728 843 45 349 99 897 27 422 1 2
DENUT3L	45 349 99 897 27 422 1 2
DENUTSF 33	99 89 7 42 7 1
DENUTSF 33	27 42 2
ELSIK1H	1
ELSIKIL BLSIK2C 2 3 1 2 1 1 1 1 4 2 1 ELSIK2D 1 3 3 1 2 1 1 1 3 3 1 2 1 1 1 3 3 5 2 1 1 1 3 3	
ELSIK2C 2 3 1 1 2 1 2 2 1 1 4 2 1 1 ELSIK2D	
ELSIKZD	31 /4
HELEN2N 9	
HELEN3C 850 885 787 558 796 847 869 731 819 767 893 HELEN3L 37 40 54 18 36 45 62 75 50 37 28 HELEN4H 34 19 131 222 161 109 29 65 61 135 31 HELEN5F 42 12 100 144 53 25 4 21 19 44 3 KOK1F 1 3 5 2 1 1 3 3 5 2 KOK2C 49 54 52 31 52 50 53 47 50 45 54 KOK4L 3 3 6 1 1 3 22 2 1 3 LNO2C 221 270 302 245 301 329 300 167 353 301 379 LNO2D 4 2 1 3 10 12 9 7 6 10 14 LNO2H 3 5 9 12 3 3 3 4 4 2 LNO2J 22 8 97 134 67 60 11 25 34 98 13 LNO3F 1 1 1 1 1 1 LNO3F 1 1 1 1 1 1 LNO3Z 1 1 1 1 1 1 LNO3Z 1 1 1 1 1 1 LNO3Z 1 1 1 1 1 1 LNO4L 7 14 13 4 8 6 7 9 12 9 6 NIK1H 37 26 161 247 184 151 28 65 76 139 17 NIK2C 919 953 868 655 876 925 791 749 979 965 1086 NIK2F 35 9 71 98 46 21 2 18 15 35 1 NIK2L 26 32 33 18 35 31 35 37 39 30 13 NIK2N 5 3 6 1 1 1 1 1 1 2 PITESSD 1 10 27 75 34 10 2 6 6 15 6 PITESSJ 15 25 17 21 45 41 67 77 56 47 22 POUSY3D 10 77 6	15 3
HELEN3L 37 40 54 18 36 45 62 75 50 37 28 HELEN4H 34 19 131 222 161 109 29 65 61 135 31 31 HELEN5F 42 12 100 144 53 25 4 21 19 44 3 KOK1F 1 3 5 2 1 1 1 3 3 KOK1F 1 1 8 11 8 6 1 3 3 5 2 50 53 47 50 45 54 KOK2C 49 54 52 31 52 50 53 47 50 45 54 KOK4L 3 3 6 1 1 1 3 2 2 1 3 3 KOK4L 3 3 6 1 1 1 3 2 2 1 3 3 3 5 4 KOK4L 3 3 6 1 1 1 3 2 2 1 3 3 5 4 KOK4L 3 3 6 1 1 1 3 2 2 1 3 3 5 4 KOK4L 3 3 5 5 9 12 3 300 167 353 301 379 300	596 939 6
HELENSF 42 12 100 144 53 25 4 21 19 44 3	49 53
HELENSF	93 1090
KOK1F 1 3 5 2 1 1 3 5 2 KOK1H 1 1 1 8 11 8 6 1 3 3 5 2 KOK2C 49 54 52 31 52 50 53 47 50 45 54 KOK4L 3 3 6 1 1 3 2 2 1 3 LNO2C 221 270 302 245 301 329 300 167 353 301 379 LNO2D 4 2 1 3 10 12 9 7 6 10 14 LNO2D 4 2 1 3 10 12 9 7 6 10 14 2 LNO2J 22 8 97 134 67 60 11 25 34 98 13	20 48
KOK1H 1 1 8 11 8 6 1 3 3 5 2 KOK2C 49 54 52 31 52 50 53 47 50 45 54 KOK4L 3 3 6 1 1 1 3 2 2 1 3 LNO2C 221 270 302 245 301 329 300 167 353 301 379 LNO2D 4 2 1 3 10 12 9 7 6 10 14 LNO2D 4 2 1 3 10 12 9 7 6 10 14 LNO2D 2 8 97 134 67 60 11 25 34 98 13 LNO2J 22 8 97 134 67 60 11 25 34 98	1 1
KOK2C 49 54 52 31 52 50 53 47 50 45 54 KOK4L 3 3 6 1 1 1 3 2 2 1 3 LNO2C 221 270 302 245 301 329 300 167 353 301 379 LNO2D 4 2 1 3 10 12 9 7 6 10 14 LNO2H 3 5 9 12 3 3 4 4 2 LNO2J 22 8 97 134 67 60 11 25 34 98 13 LNO2Q 1	7 50
KOK4L 3 3 6 1 1 3 2 2 1 3 LNO2C 221 270 302 245 301 329 300 167 353 301 379 LNO2D 4 2 1 3 10 12 9 7 6 10 14 LNO2D 3 5 9 12 3 3 4 4 2 LNO2J 22 8 97 134 67 60 11 25 34 98 13 LNO3F 1 3 1 3 1 <td>47 584</td>	47 584
LNO2C 221 270 302 245 301 329 300 167 353 301 379 LNO2D 4 2 1 3 10 12 9 7 6 10 14 LNO2H 3 5 9 12 3 3 4 4 2 LNO2J 22 8 97 134 67 60 11 25 34 98 13 LNO3F 1	3 28
LNO2D	219 338
LNO2H 3	3 8'
LNO2J 22 8 97 134 67 60 11 25 34 98 13 LNO2Q	4 49
LNO2Q	58 627
LNO3Z 1 2 9 6 6 1 <td></td>	
LNO4L 7	
NIK1H 37 26 161 247 184 151 28 65 76 139 17 NIK2C 919 953 868 655 876 925 791 749 979 965 1086 NIK2F 35 9 71 98 46 21 2 18 15 35 1 NIK2L 26 32 33 18 35 31 35 37 39 30 13 NIK2N 5 3 6 1 1 1 2 2 PITES3C 65 75 62 88 110 171 173 137 197 130 140 PITES3D 1	1
NIK2C 919 953 868 655 876 925 791 749 979 965 1086 NIK2F 35 9 71 98 46 21 2 18 15 35 1 NIK2L 26 32 33 18 35 31 35 37 39 30 13 NIK2N 5 3 6 1 1 1 2 2 2 12 10 10 2 10 10 2 10	17 11:
NIK2F 35 9 71 98 46 21 2 18 15 35 1	109 1240
NIK2L 26 32 33 18 35 31 35 37 39 30 13 NIK2N 5 3 6 1 1 1 2 2 PITES3C 65 75 62 88 110 171 173 137 197 130 140 PITES3D 1	733 1049 9
NIK2N 5 3 6 1 1 1 2 PITES3C 65 75 62 88 110 171 173 137 197 130 140 PITES3D 1 9	31 382
PITES3C 65 75 62 88 110 171 173 137 197 130 140 PITES3D 1 6 6 6 7 6 8 8 1 7 7 6 8 1 7 7 6 8 1 7 7 6 8 1 7 7 6 8 1 8 1 8 1 8 1 1 8 1 1 1 7 6 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>29 358</td></t<>	29 358
PITES3D 1 PITES3F 3 PITES3H 6 PITES3J 10 27 75 34 10 2 6 15 6 PITES3L 15 25 17 21 45 41 67 77 56 47 22 ROUSY3C 763 733 581 533 757 817 964 839 964 949 1008 ROUSY3D 1 7 6	7 2
PITES3F 3 6 PITES3H 6 2 PITES3J 10 27 75 34 10 2 6 6 15 6 PITES3L 15 25 17 21 45 41 67 77 56 47 22 ROUSY3C 763 733 581 533 757 817 964 839 964 949 1008 ROUSY3D 1 7 6	98 1440
PITES3H 6 2 PITESJ 10 27 75 34 10 2 6 6 15 6 PITES3L 15 25 17 21 45 41 67 77 56 47 22 ROUSY3C 763 733 581 533 757 817 964 839 964 949 1008 ROUSY3D 1 7 6	
PITES3J 10 27 75 34 10 2 6 6 15 6 PITES3L 15 25 17 21 45 41 67 77 56 47 22 ROUSY3C 763 733 581 533 757 817 964 839 964 949 1008 ROUSY3D 1 7 6	
PITES3L 15 25 17 21 45 41 67 77 56 47 22 ROUSY3C 763 733 581 533 757 817 964 839 964 949 1008 ROUSY3D 1 7 6	
ROUSY3C 763 733 581 533 757 817 964 839 964 949 1008 ROUSY3D 1 7 6	35 220
ROUSY3D 1 7 6	52 48
	780 968
	6 20
ROUSY3H 10 3 24 1 1 1 9	4 5
ROUSY3J 28 30 191 351 161 112 40 84 98 166 31	126 1418
ROUSY3L 36 65 52 27 51 64 79 109 66 63 39	95 74
ROUSY3Z 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
SOPOK2H 15 9 93 83 127 24 10 26 25 62 13	35 52 2
SOPOK2J 163 73 487 893 455 356 118 266 244 413 68	296 3832
SOPOK2L 114 127 138 58 170 137 237 259 182 129 75	198 1824
SOPOK3C 1976 1968 1913 1626 2284 2450 2913 2538 2589 2355 2474	932 27018
SOPOK3D 90 90 92 74 94 119 112 89 98 112 125	103 1198
SOPOK3F 4 24 2 1 1 1 19 1	5:
SOPOK4Z 1 2 1 1 1 2	2
SPI2C 605 586 552 341 575 624 624 553 695 634 783	715°
SPI2D 8 16 3 5 5 7 14 2 9 7 22	12 110
SPI2J 56 23 136 193 119 99 25 69 59 102 26	66 97 3
SPI2Q 2 7	(
SPI3F 2 5 5	12
SPI3H 1 12 8 28 2 1 2 2 8 2	
SPI3L 28 39 38 9 33 28 38 35 35 20 20	4 70
SPI4Z 1	4 7 (53 37 (
Total 8760 8579 9969 9578 10760 10732 10818 10184 10874 10949 10218	

Number of night flights per SID for the period 1/01/2007 - 31/12/2007 Considered are only departures flights during the night. Helicopters and missed approaches are excluded

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total 2007
					,			9					
none	0	0	0	2	1	0	1	2	0	2	0	0	8
CIV1C	12	12	6	14	20	19	31	24	19	22	17	18	214
CIV1E						1			1				2
CIV2Q		1	2	3	2	4	5	3	4	2		2	28
CIV4J	13	29	54	68	41	25	23	37	36	25	29	25	405
CIV7D	118	85	74	66	88	100	96	96	76	101	86	77	1063
CIV7L	1	1	11	3	1	5	11	14	3	2		5	57
DENUT2N	4	6	12	10	7	6	13	10	7	6	8	8	97
DENUT3C	90	68	61	58	76	83		70	62	73			842
DENUT3L		1											1
DENUT4H	5	13	27	24	25	14	16	28	18	16	21	13	220
DENUT5F	5		1	9	1		_		3	_		4	23
HELEN2N	_	1	3	1	2	3	3	3		1		7	25
HELEN3C	55		41	31	34	45			33	44		34	477
HELEN4H	3		18	22	14	9			19	11			159
HELEN5F	2		2	3	1		Ť	<u> </u>	3		<u> </u>	4	
KOK2C	_				3	1		1	1			_	6
LNO2C				1		1			·	2		1	5
LNO2H				1						_			1
LNO2J	9	10	18	28	15	9	10	12	14	10	4	6	
LNO2Q		10	1	1	10	J	10	3		1		1	8
LNO3Z	33	35	23	11	33	25	26	23	16	27	8		
LNO4L	41	28	38	30	21	29		30	21	14			307
NIK1H	10		32	38	26	17	16		23	16		15	258
NIK2C	4		3	4	3	5				4			52
NIK2F		J	2	3	3			J				2	10
NIK2L				J					1				1
NIK2N	7	7	12	5	6	6	10	11	8	5	7	6	90
NIK4Z	87	76	61	48	74	76		72		84			859
PITES3C	07	70	01	2	1	2		2	1	04	7.5	- 00	9
PITES3J	3	2	8	11	7	5				12	15	10	115
PITES3L	2		Ů		<i>'</i>	J	2		2	4			26
PITES3N	10		9	18	9	20		23	26	23	26		214
PITES3Z	9			6	17	16				27	25		203
ROUSY3C	3		10	4	5	2							43
ROUSY3J	5		19	20	15	8		16					163
ROUSY3L	2		19	20	1	0	1	_	2	4			26
ROUSY3N	20		17	20	15	10		20				21	213
ROUSY3N	20		17 11		16	18 22	25		15 13	15 24			213
				4	10		25	15	13	24	23		
SOPOK2H SOPOK2J	1		2 42	3 64	38	26	23	32	24	4.4	26	3 20	12 349
	13									14			
SOPOK2L	75		67	71	60	90		101	73	47	80		872
SOPOK3C	2		1	18	19	20	19	15	11	10	1	5	124
SOPOK3D	1 50							,-					1
SOPOK4Z	58	64	31	14	68	48		43	41	72	63	52	600
SPI2C	ļ .				1	2	2		1				6
SPI2D	1	<u> </u>						<u> </u>	ļ .	_		_	1
SPI2J			1		2	1		3		3	5	3	22
SPI2Q					1	1			1				3
SPI3L		2	3	3	2	1				10			57
SPI4Z	1	3	1		1	3		1	7	11	7	7	42
Total	727	665	724	740	775	768	800	836	734	756	769	667	8961

Number of flights per SID for the period 1/01/2007 - 31/12/2007 Considered are only departures flights (day and night). Helicopters and missed approaches are excluded

,	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total 2007
none	122	87	84	108	92	93	81	83	123	111	54	62	1100
CIV1C	1183	1165	1133	939	1328	1342	1641	1580	1326	1277	1323	1110	15347
CIV1E	314	304	259	290	279	452	429	285	487	320	394	270	
CIV2Q CIV4H	0 2	0	2	<u>3</u>	2 8	4	5	3					28
CIV4H CIV4J	114	71	473	767	459	256	105	221	224		85	266	3406
CIV6F	0	6	21	4	0	0	0	0			0		
CIV7D	118	85	74	66	88	101	98	97	76		86	77	1068
CIV7L	127	165	145	77	149	149	237	297	184	142	90	203	1965
DENUT2N	8	8	14	10	8	6	14	10		6		11	114
DENUT3C	787	722	696	541	740	836	817	720	805	830	993	789	9276
DENUT3L DENUT4H	13 30	23 22	17 132	17 186	35 150	26 113	48 48	36 79	48 61	31 135	11 49	45 112	350 1117
DENUT5F	38	6	87	130	50	15	40	19		38	0		445
ELSIK1H	1	0	0	0	0	0	0	0					2
ELSIK1L	0	0	0	0	0	1	1	0				0	
ELSIK2C	2	3	1	2	1	2	2	1				3	24
ELSIK2D	0	0	0	0	1	1	1	0		0			
HELEN2N HELEN3C	9 905	925	9 828	589	830	892	5 918	768		811	927	630	9875
HELEN3C	37	925 40	828 54	18	36	892 45	62	768		37	28		531
HELEN4H	37	34	149	244	175	118	37	82	80	146	45		1249
HELEN5F	44	12	102	147	54	25	4	21	22	44	3		502
KOK1F	1	0	3	5	2	1	0	1				1	17
KOK1H	1	1	8	11	8	6	1	3				7	56
KOK2C KOK4L	49 3	54 3	52	31	55 1	51 1	53	48		45		47	590
LNO2C	221	270	6 302	0 246	301	330	300	167	353	303	379		3392
LNO2D	4	2/0	1	3	10	12	9	7	6		14	3	81
LNO2H	3	0	5	10	12	3	0	3				4	
LNO2J	31	18	115	162	82	69	21	37	48	108	17	64	772
LNO2Q	0	0	1	1	0	0	0	3		6			13
LNO3F	0	0	1	1	0	0	0	0					
LNO3Z LNO4L	34 48	36 42	23 51	12 34	33 29	25 35	26 41	23 39	16 33	27 23	21	10 23	273 419
NIK1H	46	42	193	285	210	168	41	89			39		1498
NIK2C	923	958	871	659	879	930	796	754	985	969	1089	738	10551
NIK2F	35	9	73	101	49	21	2	18	15	35	1	33	392
NIK2L	26	32	33	18	35	31	35	37	40		13		359
NIK2N	12	10	18	5	7	6	11	11	8				115
NIK4Z PITES3C	87 65	76 75	61 62	48 90	74 111	76 173	72 174	72 139	64 198	84 130	79 140	66 98	859 1455
PITES3D	1	0	02	0	0	0	0	0					
PITES3F	0	0	3	0	0	0	0	0					
PITES3H	0	0	6	0	0	0	0	0				0	
PITES3J	3	12	35	86	41	15	9	21			21	45	341
PITES3L	17	25	17	21	45	41	69	78			32	57	511
PITES3N PITES3Z	10 9	6 9	9 10	18	9	20 16	22 13	23 19	26 20		26 25	22 32	214
ROUSY3C	766	734	581	537	762	819	972	19 845	973				9731
ROUSY3D	0	0	0	0	0	019	1	043			6		
ROUSY3F	0	1	9	2	0	0	0	0					
ROUSY3H	0	0	10	3	24	1	1	0				<u> </u>	53
ROUSY3J	33	42	210	371	176	120	47	100					
ROUSY3L	38	67	52	27	52	64	80	109			49		
ROUSY3N ROUSY3Z	20 22	10 21	17 11	20 4	15 16	18 22	21 25	20 16					213
SOPOK2H	16	11	95	86	128	24	10	26					
SOPOK2J	176	100	529	957	493	382	141	298			94		
SOPOK2L	189	176	205	129	230	227	345	360					
SOPOK3C	1978	1971	1914	1644	2303	2470	2932	2553		2365			27142
SOPOK3D	91	90	92	74	94	119	112	89					
SOPOK3F SOPOK4Z	0 59	4 66	24 31	2 14	1 69	0 48	0 47	1 43		19 74			
SPI2C	605	586	552	341	576	626	626	553					
SPI2D	9	16	3	5	5	7	14	2			22		
SPI2J	56	23	137	193	121	100	25	72		105	31	69	
SPI2Q	0	0	0	0	1	1	0						
SPI3F	0	2	5	0	0	0	0						
SPI3H	1	0	12	8	28	2	1	2					1
SPI3L SPI4Z	28 1	41	41 1	12 0	35 1	29 3	41 0	39 1				60	
UI 174	9487	9244	10693	10318		11 500	11618	11020		11705		9902	

Statistic SID 2007 Day QCDB 11/01/2008

SID	unknown	Helicopter	Airplane
unkown		1.366	1.117
BATAK			1
CIV1C		2	15.130
CIV1E		1	4.082
CIV4H			41
CIV4J			3.001
CIV6F			56
CIV7D			4
CIV7L			1.908
DENUT2N			17
DENUT3C	1		8.432
DENUT3L			349
DENUT4H			898
DENUT5F			422
ELSIK1H			2
ELSIK1L			1
ELSIK2C			23
ELSIK2D			3
HELEN2N			38
HELEN3C			9.399
HELEN3L			531
HELEN4H			1.090
HELEN5F			487
KERKY		1	107
KOK1F		<u> </u>	17
KOK1F KOK1H			56
KOK1H KOK2C		4	584
KOK2C KOK4L		1	
		_	28
LNO2C LNO2D		3	3.388
			81
LNO2H			49
LNO2J			627
LNO2Q			5
LNO3F			2
LNO3Z			4
LNO4L			112
NIK1H			1.240
NIK2C			10.500
NIK2F			382
NIK2L			358
NIK2N			25
NIVOR			5
PITES3C			1.445
PITES3D			1
PITES3F			9
PITES3H			8
PITES3J			226
PITES3L			485
ROUSY3C			9.686
ROUSY3D			20
ROUSY3F			23
ROUSY3H			53
ROUSY3J			1.419
ROUSY3L			746
ROUSY3Z	1		
RUDEL			1
SOPOK2C			522
SOPOK2H			522
SOPOK2J			3.833
SOPOK2L			1.824
SOPOK3C			27.015
SOPOK3D			1.196
SOPOK3F			52
SOPOK4Z			10
SPI2C			7.149
SPI2D			110
SPI2J			973
SPI2Q			9
SPI3F			12
SPI3H			70
SPI3L			376
SPI4Z			1
SUSET			1
TALUK			1
UBIDU			1
Total	1	1.374	
	· · · · · ·		

Statistic SID 2007 night QCDB 11/01/2008

SID	Helicopter	Airplane
unknown	65	2
CIV1C	- 00	215
CIV1E		213
CIV1L CIV2Q		28
CIV2Q CIV4J		405
CIV7D		1.063
CIV7L		57
DENUT2N		97
DENUT3C		842
DENUT3L		1
DENUT4H		220
DENUT5F		23
HELEN2N		25
HELEN3C		477
HELEN4H		159
HELEN5F		15
KOK2C		6
LNO2C		5
LNO2H		1
LNO2J		145
LNO2Q		8
LNO3Z		269
LNO3L LNO4L		307
NIK1H		258
NIK2C		53
NIK2F		10
NIK2L		1
NIK2N		90
NIK4Z		858
PITES3C		9
PITES3J		115
PITES3L		26
PITES3N		214
PITES3Z		203
ROUSY		1
ROUSY3C		43
ROUSY3J		163
ROUSY3L		26
ROUSY3N		213
ROUSY3Z		221
SOPOK2H		12
SOPOK2H SOPOK2J		349
SOPOK2J SOPOK2L		872
SOPOK2L SOPOK3C		126
SOPOK3D		500
SOPOK4Z		598
SPI2C		6
SPI2D		1
SPI2J		22
SPI2Q		3
SPI3L		58
SPI4Z		42
Total	65	8966

Surveillance du bruit – Brussels Airport

Rapport annuel 2007

Annexe C

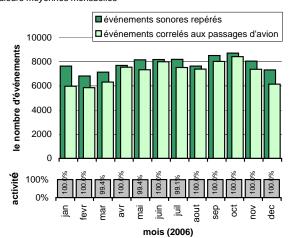
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.8%	99.9%	99.8%
le nombre total des événements sonores repérés	85944	8162	94106
le nombre des événements correlés aux passages d'avion	79700	6222	85922
rapport [%] (taux de corrélation)	92.7%	76.2%	91.3%

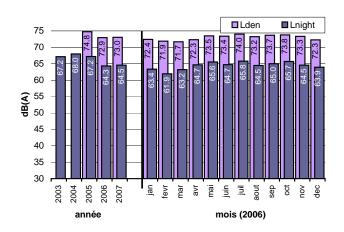
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	70.2
Levening	19-23 h	70.0
Lnight	23-07 h	64.5
Lden		73.0

tranches horaires d'après des critères opérationnels

•		_
LAeq,jour	06-23 h	70.1
LAeq,nuit	23-06 h	64.1
LDN		71.7


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

Evolution des indicateurs Lden en Lnight

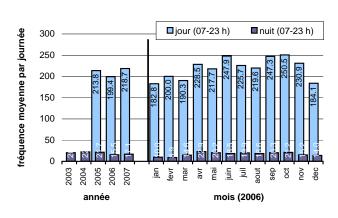
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax

classe	nombre	ombre moyen par journée			
LAmax	jour	nuit	journée		
dB(A)	07-23 h	23-07 h	24h		
60-65	0.0	0.0	0.0		
65-70	0.2	0.0	0.2		
70-75	3.3	0.1	3.4		
75-80	8.8	0.4	9.2		
80-85	24.8	1.7	26.5		
85-90	99.6	4.4	103.9		
90-95	77.1	8.6	85.6		
95-100	4.7	1.8	6.6		
> 100	0.4	0.1	0.4		
Totaal	218.9	17.1	235.8		


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	218.7
nxLAmax>70, nuit	23-07 h	17.1

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

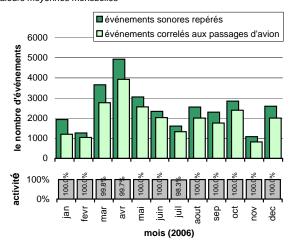
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.8%	99.9%	99.8%
le nombre total des événements sonores repérés	25412	4726	30138
le nombre des événements correlés aux passages d'avion	20285	3526	23811
rapport [%] (taux de corrélation)	79.8%	74.6%	79.0%

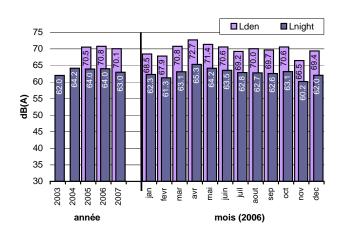
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	66.1
Levening	19-23 h	64.6
Lnight	23-07 h	63.0
Lden		70.1

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	65.6			
LAeq,nuit	23-06 h	63.0			
LDN		69.3			


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

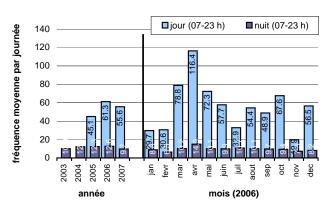
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

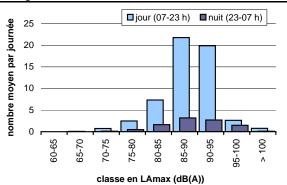
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre	nombre moyen par journée			
LAmax	jour nuit		journée		
dB(A)	07-23 h	23-07 h	24h		
60-65	0.0	0.0	0.0		
65-70	0.1	0.0	0.1		
70-75	0.8	0.1	0.9		
75-80	2.5	0.5	2.9		
80-85	7.3	1.6	9.0		
85-90	21.8	3.2	25.0		
90-95	19.9	2.7	22.6		
95-100	2.6	1.5	4.1		
> 100	0.8	0.1	0.9		
Totaal	55.7	9.7	65.4		

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	55.6
nxLAmax>70, nuit	23-07 h	9.7

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

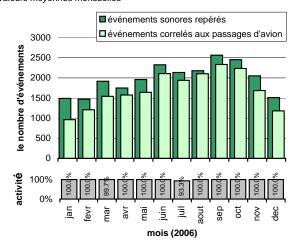
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.4%	99.4%	99.4%
le nombre total des événements sonores repérés	21100	2695	23795
le nombre des événements correlés aux passages d'avion	18310	2184	20494
rapport [%] (taux de corrélation)	86.8%	81.0%	86.1%

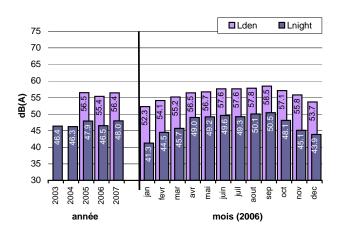
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	53.7
Levening	19-23 h	53.4
Lnight	23-07 h	48.0
Lden		56.4

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	53.8
LAeq,nuit	23-06 h	37.1
LDN		52.7


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

Evolution des indicateurs Lden en Lnight

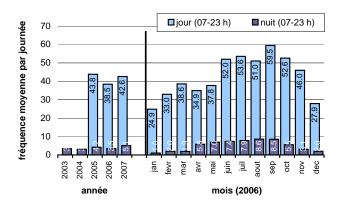
valeurs moyennes mensuelles et annuelles

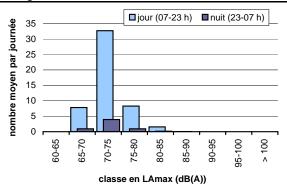
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax

classe	nombre moyen par journée				nombre moyen par journée		
LAmax	jour	jour nuit journée					
dB(A)	07-23 h	23-07 h	24h				
60-65	0.0	0.0	0.0				
65-70	7.8	1.0	8.8				
70-75	32.7	3.9	36.7				
75-80	8.3	0.9	9.3				
80-85	1.5	0.2	1.7				
85-90	0.0	0.0	0.0				
90-95	0.0	0.0	0.0				
95-100	0.0	0.0	0.0				
> 100	0.0	0.0	0.0				
Totaal	50.4	6.0	56.5				


La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	42.6
nxLAmax>70, nuit	23-07 h	5.1

Evolution de la fréquence de dépassement nxLAmax>70

1.7

valeurs moyennes mensuelles et annuelles

Surveillance du bruit - Brussels Airport Rapport annuel 2007

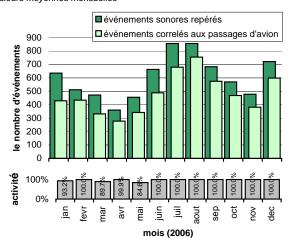
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	97.3%	97.2%	97.2%
le nombre total des événements sonores repérés	5260	2000	7260
le nombre des événements correlés aux passages d'avion	3903	1857	5760
rapport [%] (taux de corrélation)	74.2%	92.9%	79.3%

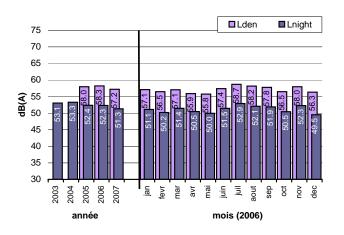
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	50.3
Levening	19-23 h	46.5
Lnight	23-07 h	51.3
Lden		57.2

tranches horaires d'après des critères opérationnels

•		•
LAeq,jour	06-23 h	49.8
LAeq,nuit	23-06 h	51.2
LDN		56.6


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

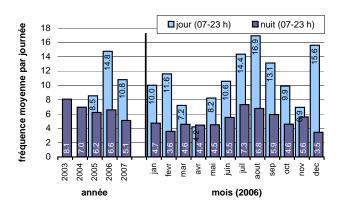
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

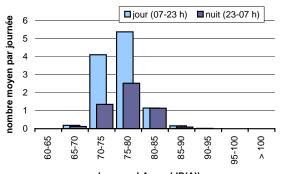
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée				nombre moyen par journée		
LAmax	jour	jour nuit journée					
dB(A)	07-23 h	23-07 h	24h				
60-65	0.0	0.0	0.0				
65-70	0.2	0.1	0.3				
70-75	4.1	1.4	5.5				
75-80	5.4	2.5	7.9				
80-85	1.1	1.1	2.3				
85-90	0.2	0.1	0.2				
90-95	0.0	0.0	0.0				
95-100	0.0	0.0	0.0				
> 100	0.0	0.0	0.0				
Totaal	11.0	5.2	16.2				

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	10.8
nxLAmax>70, nuit	23-07 h	5.1

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

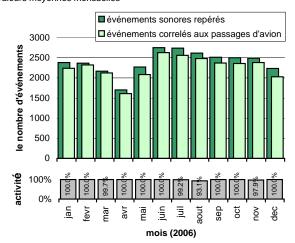
classe en LAmax (dB(A))

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.1%	99.1%	99.1%
le nombre total des événements sonores repérés	19019	9692	28711
le nombre des événements correlés aux passages d'avion	17921	9250	27171
rapport [%] (taux de corrélation)	94.2%	95.4%	94.6%

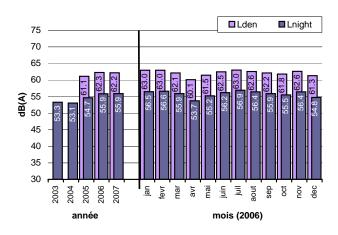
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	56.1
Levening	19-23 h	54.6
Lnight	23-07 h	55.9
Lden		62.2

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	55.6
LAeq,nuit	23-06 h	56.3
LDN		61.8

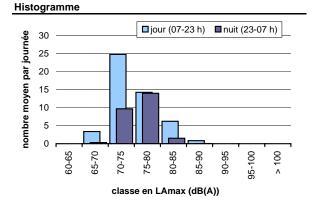

Evolution du nombre des événements sonores

valeurs moyennes mensuelles

Evolution des indicateurs Lden en Lnight

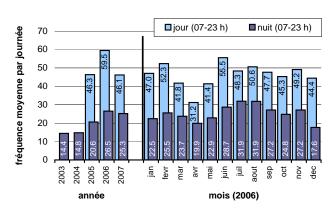
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax


sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax

classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.0	0.0	0.0
65-70	3.4	0.3	3.7
70-75	24.8	9.7	34.5
75-80	14.3	14.0	28.3
80-85	6.2	1.5	7.7
85-90	0.8	0.1	0.9
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	49.5	25.6	75.1


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	46.1
nxLAmax>70, nuit	23-07 h	25.3

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

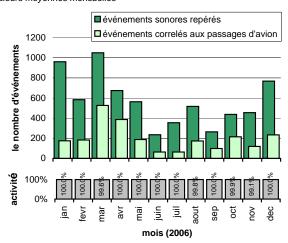
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.8%	99.9%	99.9%
le nombre total des événements sonores repérés	5762	1098	6860
le nombre des événements correlés aux passages d'avion	1920	503	2423
rapport [%] (taux de corrélation)	33.3%	45.8%	35.3%

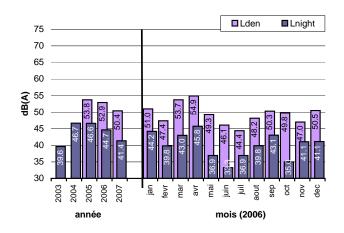
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	48.6
Levening	19-23 h	47.2
Lnight	23-07 h	41.4
Lden		50.4

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	48.1
LAeq,nuit	23-06 h	41.0
LDN		49.1


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

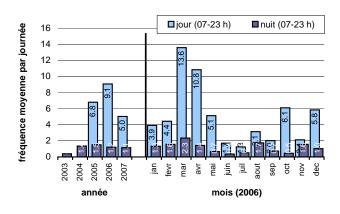
Evolution des indicateurs Lden en Lnight

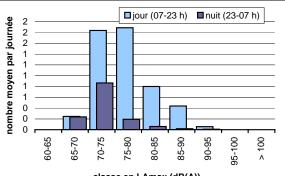
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.0	0.0	0.0
65-70	0.2	0.2	0.5
70-75	1.8	0.9	2.7
75-80	1.9	0.2	2.1
80-85	0.8	0.1	0.9
85-90	0.4	0.0	0.5
90-95	0.1	0.0	0.1
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	5.3	1.4	6.6


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	5.0
nxLAmax>70, nuit	23-07 h	1.1

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

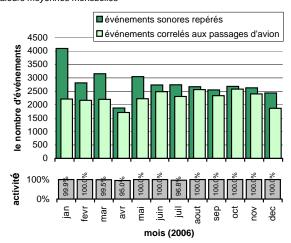
classe en LAmax (dB(A))

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.4%	99.1%	99.3%
le nombre total des événements sonores repérés	27644	5792	33436
le nombre des événements correlés aux passages d'avion	22406	4637	27043
rapport [%] (taux de corrélation)	81.1%	80.1%	80.9%

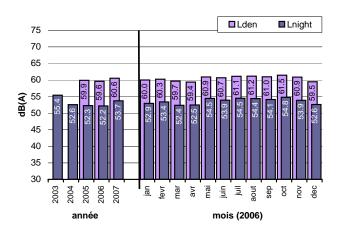
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	56.1
Levening	19-23 h	54.4
Lnight	23-07 h	53.7
Lden		60.6

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	55.9
LAeq,nuit	23-06 h	52.3
LDN		58.9


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

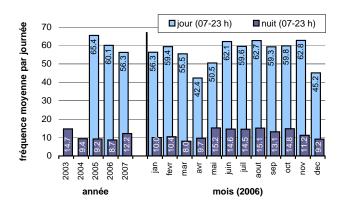
Evolution des indicateurs Lden en Lnight

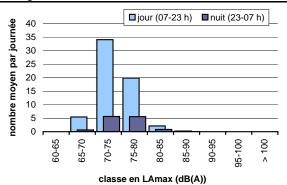
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.0	0.0	0.0
65-70	5.5	0.6	6.1
70-75	34.1	5.7	39.8
75-80	19.8	5.6	25.4
80-85	2.1	0.8	3.0
85-90	0.2	0.1	0.3
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	61.8	12.8	74.6


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	56.3
nxLAmax>70, nuit	23-07 h	12.2

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

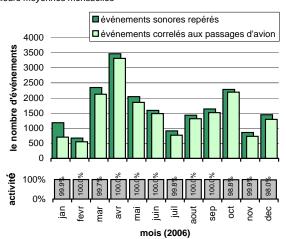
Surveillance du bruit - Brussels Airport Rapport annuel 2007

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.7%	99.7%	99.7%
le nombre total des événements sonores repérés	17561	2303	19864
le nombre des événements correlés aux passages d'avion	15804	2039	17843
rapport [%] (taux de corrélation)	90.0%	88.5%	89.8%

Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	53.6
Levening	19-23 h	52.8
Lnight	23-07 h	48.2
Lden		56.4

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	53.3
LAeq,nuit	23-06 h	47.8
LDN		55.1


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

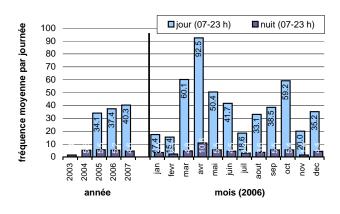
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

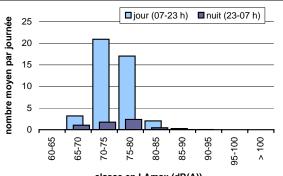
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.0	0.0	0.0
65-70	3.2	1.0	4.2
70-75	20.9	1.7	22.6
75-80	17.0	2.4	19.4
80-85	2.1	0.4	2.5
85-90	0.3	0.0	0.3
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	43.4	5.6	49.0

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	40.3
nxLAmax>70, nuit	23-07 h	4.6

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

classe en LAmax (dB(A))

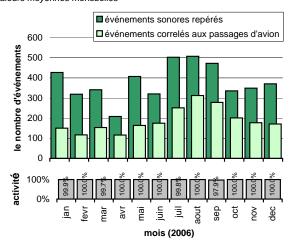
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.8%	99.7%	99.8%
le nombre total des événements sonores repérés	3274	1283	4557
le nombre des événements correlés aux passages d'avion	1304	961	2265
rapport [%] (taux de corrélation)	39.8%	74.9%	49.7%

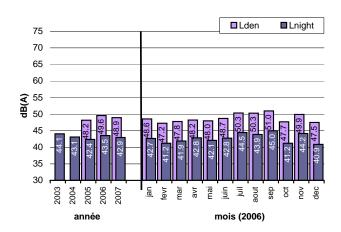
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	42.2
Levening	19-23 h	39.2
Lnight	23-07 h	42.9
Lden		48.9

tranches horaires d'après des critères opérationnels

•		_
LAeq,jour	06-23 h	41.9
LAeq,nuit	23-06 h	42.6
LDN		48.1


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

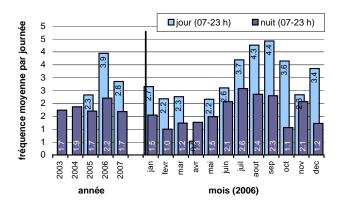
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.0	0.0	0.0
65-70	0.7	1.0	1.7
70-75	2.1	1.4	3.5
75-80	0.7	0.3	0.9
80-85	0.1	0.0	0.1
85-90	0.0	0.0	0.0
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	3.6	2.6	6.2

La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	2.8
nxLAmax>70, nuit	23-07 h	1.7

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

classe en LAmax (dB(A))

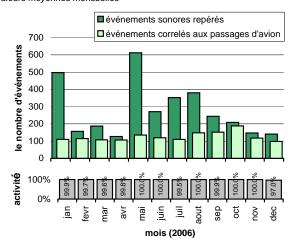
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.8%	99.4%	99.6%
le nombre total des événements sonores repérés	2989	335	3324
le nombre des événements correlés aux passages d'avion	1386	123	1509
rapport [%] (taux de corrélation)	46.4%	36.7%	45.4%

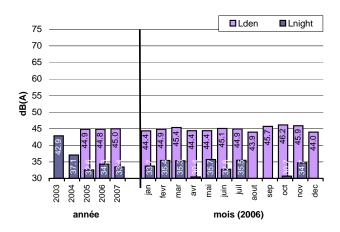
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	43.0
Levening	19-23 h	44.3
Lnight	23-07 h	33.4
Lden		45.0

tranches horaires d'après des critères opérationnels

•		_
LAeq,jour	06-23 h	43.1
LAeq,nuit	23-06 h	33.3
LDN		43.2


Evolution du nombre des événements sonores

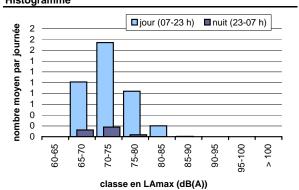
valeurs moyennes mensuelles

Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

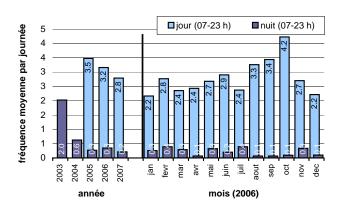
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)


Distribution rélative par classe de 5 dB sur base de LAmax

classe	nombre moyen par journée			
LAmax	jour nuit journé			
dB(A)	07-23 h	23-07 h	24h	
60-65	0.0	0.0	0.0	
65-70	1.0	0.1	1.1	
70-75	1.7	0.2	1.9	
75-80	0.8	0.0	0.9	
80-85	0.2	0.0	0.2	
85-90	0.0	0.0	0.0	
90-95	0.0	0.0	0.0	
95-100	0.0	0.0	0.0	
> 100	0.0	0.0	0.0	
Totaal	3.8	0.3	4.2	

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	2.8
nxLAmax>70, nuit	23-07 h	0.2

Histogramme

Evolution de la fréquence de dépassement nxLAmax>70

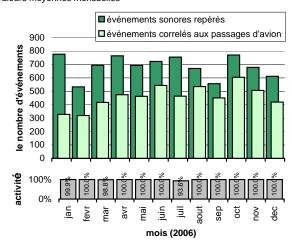
valeurs moyennes mensuelles et annuelles

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.3%	99.4%	99.3%
le nombre total des événements sonores repérés	6802	1420	8222
le nombre des événements correlés aux passages d'avion	4331	1194	5525
rapport [%] (taux de corrélation)	63.7%	84.1%	67.2%

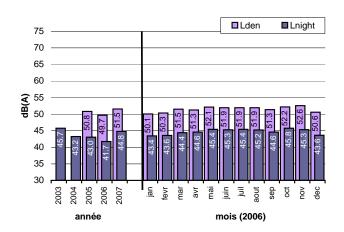
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	47.7
Levening	19-23 h	43.8
Lnight	23-07 h	44.8
Lden		51.5

tranches horaires d'après des critères opérationnels

•		•
LAeq,jour	06-23 h	47.2
LAeq,nuit	23-06 h	43.6
LDN		50.2


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

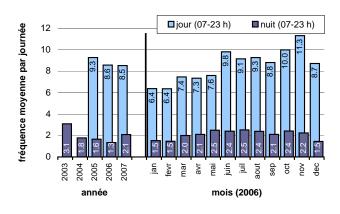
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

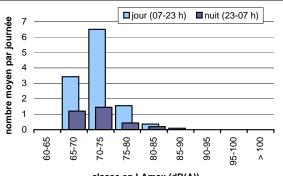
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée			
LAmax	jour	jour nuit journé		
dB(A)	07-23 h	23-07 h	24h	
60-65	0.0	0.0	0.0	
65-70	3.4	1.2	4.6	
70-75	6.5	1.5	8.0	
75-80	1.6	0.4	2.0	
80-85	0.4	0.2	0.6	
85-90	0.1	0.0	0.1	
90-95	0.0	0.0	0.0	
95-100	0.0	0.0	0.0	
> 100	0.0	0.0	0.0	
Totaal	11.9	3.3	15.2	

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	8.5
nxLAmax>70, nuit	23-07 h	2.1

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

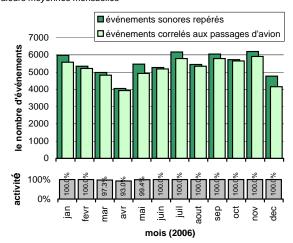
classe en LAmax (dB(A))

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.2%	99.0%	99.1%
le nombre total des événements sonores repérés	59926	5489	65415
le nombre des événements correlés aux passages d'avion	57184	5083	62267
rapport [%] (taux de corrélation)	95.4%	92.6%	95.2%

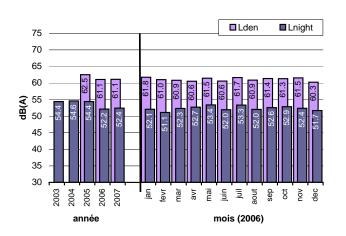
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	58.5
Levening	19-23 h	58.3
Lnight	23-07 h	52.4
Lden		61.1

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	58.4
LAeq,nuit	23-06 h	51.9
LDN		59.7

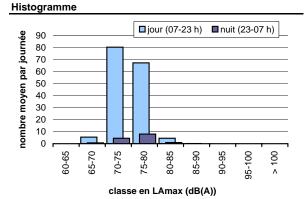

Evolution du nombre des événements sonores

valeurs moyennes mensuelles

Evolution des indicateurs Lden en Lnight

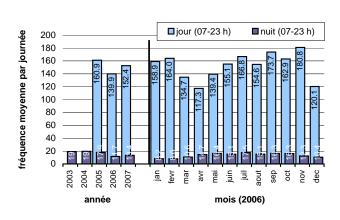
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax


sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax

classe	nombre moyen par journée		
LAmax	jour nuit journée		
dB(A)	07-23 h	23-07 h	24h
60-65	0.0	0.0	0.0
65-70	5.4	0.6	6.1
70-75	80.4	4.5	85.0
75-80	67.4	8.1	75.5
80-85	4.5	0.9	5.4
85-90	0.1	0.0	0.2
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	157.9	14.1	172.1


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	152.4
nxLAmax>70, nuit	23-07 h	13.4

Evolution de la fréquence de dépassement nxLAmax>70

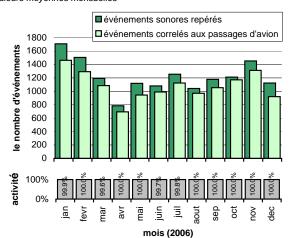
valeurs moyennes mensuelles et annuelles

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.9%	99.9%	99.9%
le nombre total des événements sonores repérés	11795	2852	14647
le nombre des événements correlés aux passages d'avion	10261	2750	13011
rapport [%] (taux de corrélation)	87.0%	96.4%	88.8%

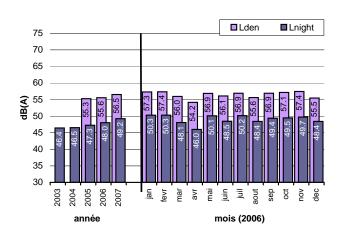
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	52.1
Levening	19-23 h	52.3
Lnight	23-07 h	49.2
Lden		56.5

tranches horaires d'après des critères opérationnels

•		•
LAeq,jour	06-23 h	52.2
LAeq,nuit	23-06 h	48.5
LDN		55.1


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

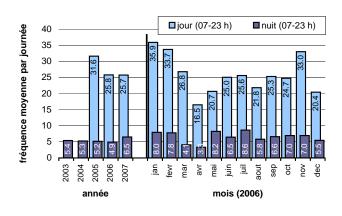
Evolution des indicateurs Lden en Lnight

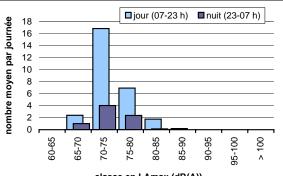
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.0	0.0	0.0
65-70	2.4	1.0	3.4
70-75	16.9	4.0	20.9
75-80	6.9	2.4	9.3
80-85	1.8	0.1	1.9
85-90	0.2	0.0	0.2
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	28.1	7.5	35.7


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	25.7
nxLAmax>70, nuit	23-07 h	6.5

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

classe en LAmax (dB(A))

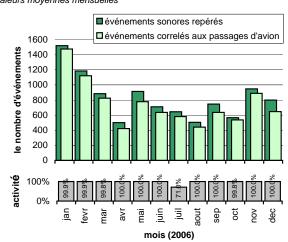
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	97.5%	97.5%	97.5%
le nombre total des événements sonores repérés	7923	1999	9922
le nombre des événements correlés aux passages d'avion	7104	1879	8983
rapport [%] (taux de corrélation)	89.7%	94.0%	90.5%

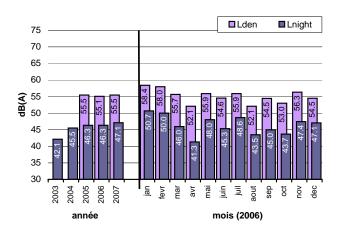
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	52.4
Levening	19-23 h	52.6
Lnight	23-07 h	47.1
Lden		55.5

tranches horaires d'après des critères opérationnels

•		_
LAeq,jour	06-23 h	52.3
LAeq,nuit	23-06 h	47.0
LDN		54.2


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

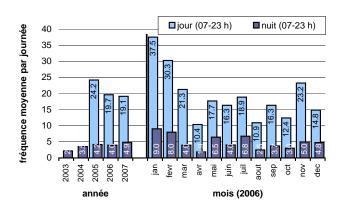
Evolution des indicateurs Lden en Lnight

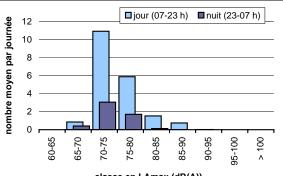
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.0	0.0	0.0
65-70	0.8	0.4	1.3
70-75	10.9	3.1	14.0
75-80	5.9	1.7	7.6
80-85	1.5	0.1	1.7
85-90	0.8	0.0	0.8
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	20.0	5.3	25.2


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	19.1
nxLAmax>70, nuit	23-07 h	4.9

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

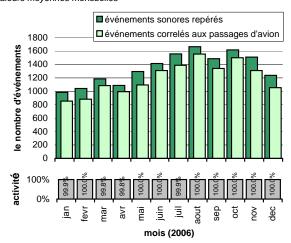
classe en LAmax (dB(A))

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.9%	100.0%	100.0%
le nombre total des événements sonores repérés	12696	3381	16077
le nombre des événements correlés aux passages d'avion	11251	3113	14364
rapport [%] (taux de corrélation)	88.6%	92.1%	89.3%

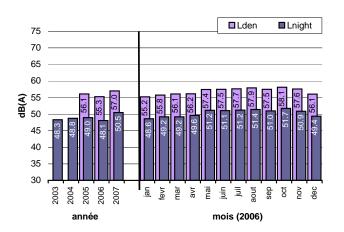
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	52.3
Levening	19-23 h	49.3
Lnight	23-07 h	50.5
Lden		57.0

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	52.1
LAeq,nuit	23-06 h	48.9
LDN		55.3

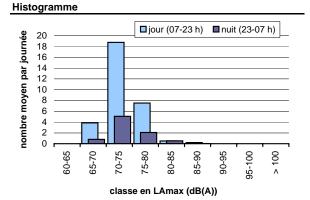

Evolution du nombre des événements sonores

valeurs moyennes mensuelles

Evolution des indicateurs Lden en Lnight

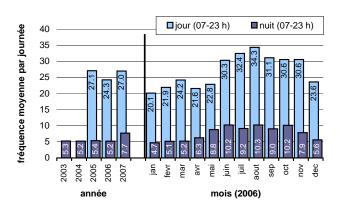
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax


sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax

classe	nombre moyen par journée				nombre moyen par jo	
LAmax	jour nuit journée					
dB(A)	07-23 h	23-07 h	24h			
60-65	0.0	0.0	0.0			
65-70	3.9	0.8	4.7			
70-75	18.7	5.1	23.8			
75-80	7.5	2.1	9.6			
80-85	0.5	0.5	1.0			
85-90	0.2	0.0	0.2			
90-95	0.0	0.0	0.0			
95-100	0.0	0.0	0.0			
> 100	0.0	0.0	0.0			
Totaal	30.8	8.5	39.4			


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	27.0
nxLAmax>70, nuit	23-07 h	7.7

Evolution de la fréquence de dépassement nxLAmax>70

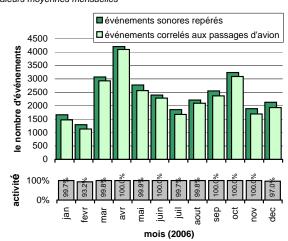
valeurs moyennes mensuelles et annuelles

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.3%	98.9%	99.1%
le nombre total des événements sonores repérés	26391	2875	29266
le nombre des événements correlés aux passages d'avion	24598	2720	27318
rapport [%] (taux de corrélation)	93.2%	94.6%	93.3%

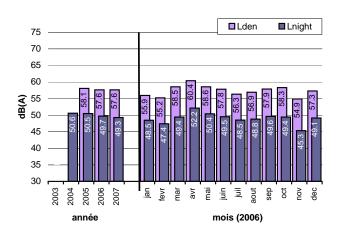
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	54.9
Levening	19-23 h	54.3
Lnight	23-07 h	49.3
Lden		57.6

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	54.7
LAeq,nuit	23-06 h	48.2
LDN		56.0

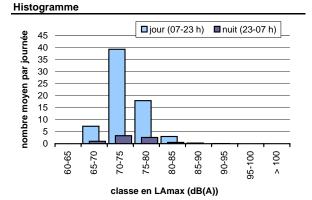

Evolution du nombre des événements sonores

valeurs moyennes mensuelles

Evolution des indicateurs Lden en Lnight

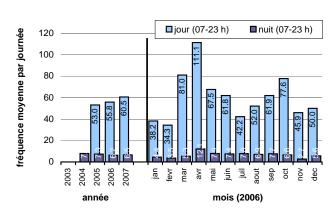
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax


sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax

classe	nombre moyen par journée				nombre moyen par journée		
LAmax	jour	jour nuit journée					
dB(A)	07-23 h	23-07 h	24h				
60-65	0.0	0.0	0.0				
65-70	7.3	1.0	8.3				
70-75	39.4	3.4	42.8				
75-80	17.9	2.6	20.6				
80-85	3.0	0.6	3.6				
85-90	0.2	0.0	0.2				
90-95	0.0	0.0	0.0				
95-100	0.0	0.0	0.0				
> 100	0.0	0.0	0.0				
Totaal	67.8	7.5	75.5				


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	60.5
nxLAmax>70, nuit	23-07 h	6.5

Evolution de la fréquence de dépassement nxLAmax>70

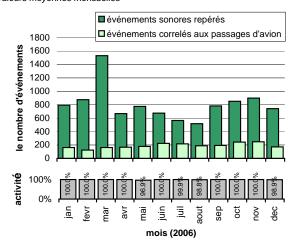
valeurs moyennes mensuelles et annuelles

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.3%	99.7%	99.5%
le nombre total des événements sonores repérés	8525	1146	9671
le nombre des événements correlés aux passages d'avion	1473	806	2279
rapport [%] (taux de corrélation)	17.3%	70.3%	23.6%

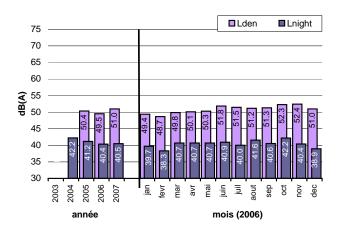
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	49.4
Levening	19-23 h	49.2
Lnight	23-07 h	40.5
Lden		51.0

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	49.2
LAeq,nuit	23-06 h	40.3
LDN		49.5


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

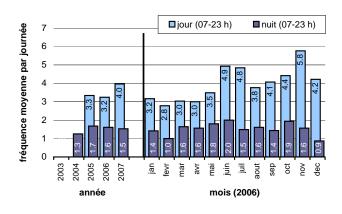
Evolution des indicateurs Lden en Lnight

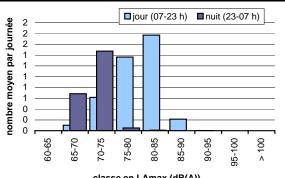
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.0	0.0	0.0
65-70	0.1	0.7	0.8
70-75	0.6	1.5	2.1
75-80	1.4	0.0	1.4
80-85	1.8	0.0	1.8
85-90	0.2	0.0	0.2
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	4.1	2.2	6.3


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	4.0
nxLAmax>70, nuit	23-07 h	1.5

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

classe en LAmax (dB(A))

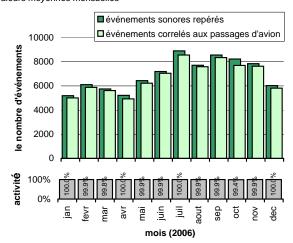
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	100.0%	99.8%	99.9%
le nombre total des événements sonores repérés	72289	10848	83137
le nombre des événements correlés aux passages d'avion	69870	10447	80317
rapport [%] (taux de corrélation)	96.7%	96.3%	96.6%

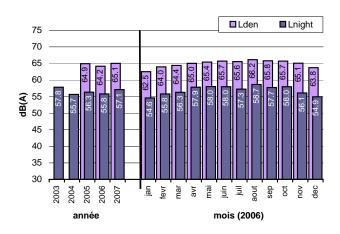
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	62.0
Levening	19-23 h	61.2
Lnight	23-07 h	57.1
Lden		65.1

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	62.0
LAeq,nuit	23-06 h	54.1
LDN		62.7


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

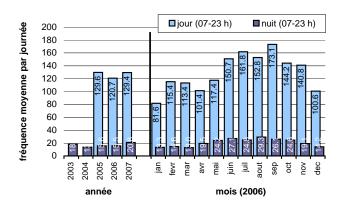
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

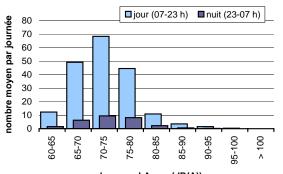
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	12.3	1.5	13.9
65-70	49.1	6.2	55.4
70-75	68.4	9.5	78.0
75-80	44.6	8.2	52.8
80-85	10.9	2.2	13.2
85-90	3.6	0.6	4.2
90-95	1.5	0.3	1.8
95-100	0.3	0.0	0.3
> 100	0.0	0.0	0.0
Totaal	190.9	28.6	219.7

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	129.4
nxLAmax>70, nuit	23-07 h	20.8

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

classe en LAmax (dB(A))

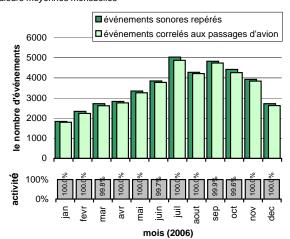
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.9%	99.8%	99.9%
le nombre total des événements sonores repérés	37011	5087	42098
le nombre des événements correlés aux passages d'avion	36026	4951	40977
rapport [%] (taux de corrélation)	97.3%	97.3%	97.3%

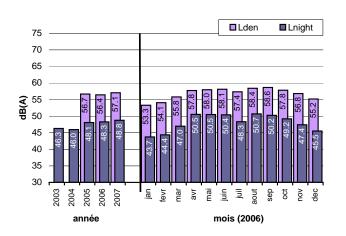
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	54.2
Levening	19-23 h	53.9
Lnight	23-07 h	48.8
Lden		57.1

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	54.4
LAeq,nuit	23-06 h	40.2
LDN		53.5


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

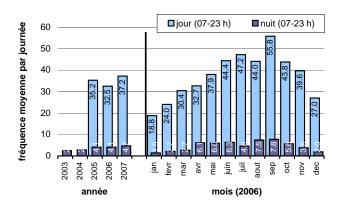
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

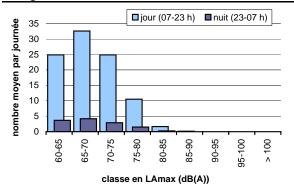
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	24.9	3.7	28.6
65-70	32.6	4.2	36.8
70-75	24.9	2.9	27.8
75-80	10.5	1.5	12.0
80-85	1.6	0.2	1.9
85-90	0.1	0.0	0.2
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	94.7	12.6	107.3

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	37.2
nxLAmax>70, nuit	23-07 h	4.7

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

ANNEXE C - 28/19

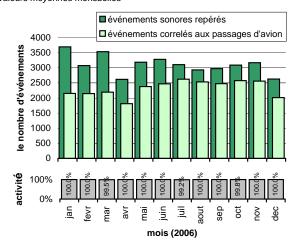
Surveillance du bruit - Brussels Airport

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.9%	99.9%	99.9%
le nombre total des événements sonores repérés	32169	5102	37271
le nombre des événements correlés aux passages d'avion	23634	4286	27920
rapport [%] (taux de corrélation)	73.5%	84.0%	74.9%

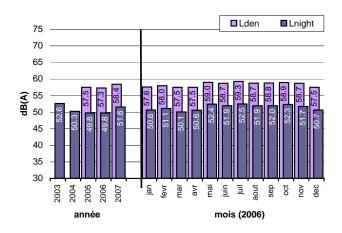
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	54.0
Levening	19-23 h	52.3
Lnight	23-07 h	51.6
Lden		58.4

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	53.9
LAeq,nuit	23-06 h	49.9
LDN		56.6


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

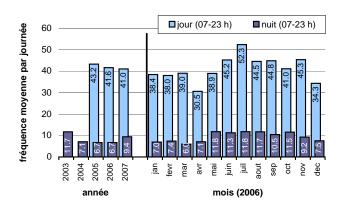
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

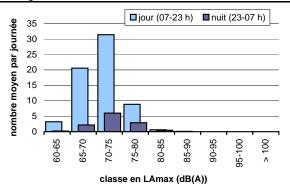
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	3.2	0.2	3.4
65-70	20.6	2.2	22.7
70-75	31.4	6.0	37.5
75-80	8.8	2.9	11.7
80-85	0.6	0.5	1.1
85-90	0.1	0.0	0.1
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	64.8	11.8	76.6

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	41.0
nxLAmax>70, nuit	23-07 h	9.4

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

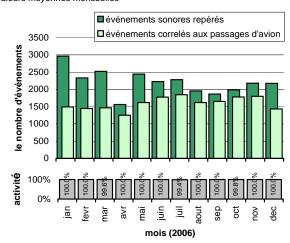
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.9%	99.9%	99.9%
le nombre total des événements sonores repérés	21983	4504	26487
le nombre des événements correlés aux passages d'avion	15906	3270	19176
rapport [%] (taux de corrélation)	72.4%	72.6%	72.4%

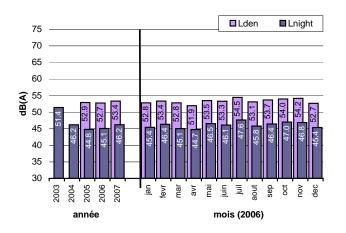
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	49.5
Levening	19-23 h	48.1
Lnight	23-07 h	46.2
Lden		53.4

tranches horaires d'après des critères opérationnels

•		•
LAeq,jour	06-23 h	49.4
LAeq,nuit	23-06 h	44.5
LDN		51.5


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

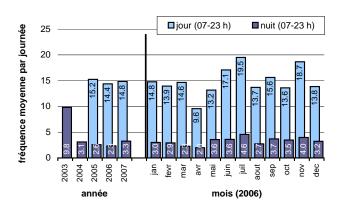
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

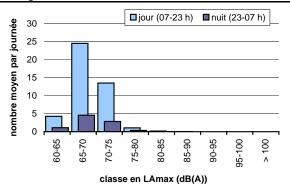
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée			
LAmax	jour	journée		
dB(A)	07-23 h	23-07 h	24h	
60-65	4.2	1.1	5.4	
65-70	24.5	4.6	29.1	
70-75	13.5	2.9	16.4	
75-80	1.1	0.4	1.5	
80-85	0.2	0.0	0.2	
85-90	0.1	0.0	0.1	
90-95	0.0	0.0	0.0	
95-100	0.0	0.0	0.0	
> 100	0.0	0.0	0.0	
Totaal	43.6	9.0	52.6	

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	14.8
nxLAmax>70, nuit	23-07 h	3.3

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

Surveillance du bruit - Brussels Airport Rapport annuel 2007

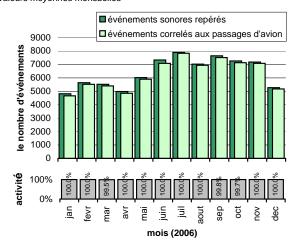
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	100.0%	99.9%	99.9%
le nombre total des événements sonores repérés	65406	11156	76562
le nombre des événements correlés aux passages d'avion	64281	10816	75097
rapport [%] (taux de corrélation)	98.3%	97.0%	98.1%

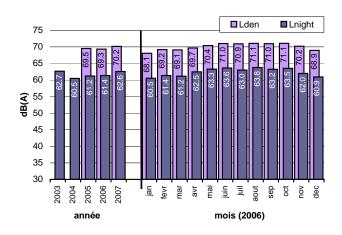
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	66.9
Levening	19-23 h	65.8
Lnight	23-07 h	62.6
Lden		70.2

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	66.8
LAeq,nuit	23-06 h	59.7
LDN		67.9

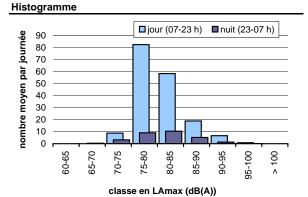

Evolution du nombre des événements sonores

valeurs moyennes mensuelles

Evolution des indicateurs Lden en Lnight

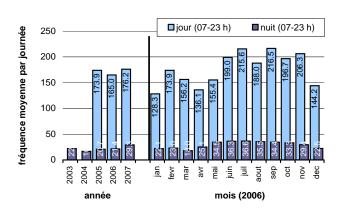
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax


sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax

classe	nombre moyen par journée			
LAmax	jour	nuit	journée	
dB(A)	07-23 h	23-07 h	24h	
60-65	0.0	0.0	0.0	
65-70	0.0	0.4	0.4	
70-75	8.8	3.2	12.1	
75-80	82.6	9.1	91.7	
80-85	58.4	10.4	68.8	
85-90	18.9	5.2	24.1	
90-95	6.6	1.3	7.9	
95-100	0.8	0.1	0.9	
> 100	0.0	0.0	0.0	
Totaal	176.2	29.7	205.9	


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	176.2
nxLAmax>70, nuit	23-07 h	29.3

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

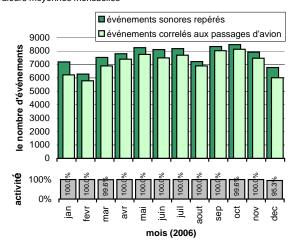
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.6%	99.5%	99.5%
le nombre total des événements sonores repérés	84580	7453	92033
le nombre des événements correlés aux passages d'avion	79266	6453	85719
rapport [%] (taux de corrélation)	93.7%	86.6%	93.1%

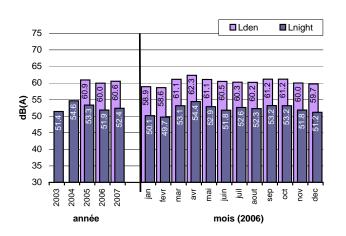
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	57.6
Levening	19-23 h	57.1
Lnight	23-07 h	52.4
Lden		60.6

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	57.4
LAeq,nuit	23-06 h	52.0
LDN		59.3

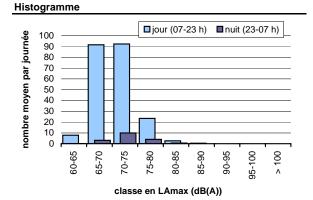

Evolution du nombre des événements sonores

valeurs moyennes mensuelles

Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

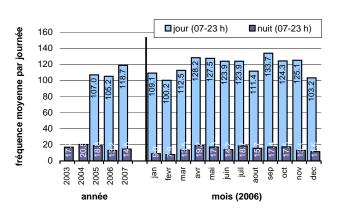
Analyse de l'indice acoustique LAmax


sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax

classe	nombre moyen par journée		
LAmax	jour	journée	
dB(A)	07-23 h	23-07 h	24h
60-65	7.8	0.1	7.9
65-70	91.6	3.0	94.7
70-75	92.2	9.9	102.1
75-80	23.4	4.1	27.5
80-85	2.6	0.6	3.3
85-90	0.4	0.0	0.4
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	218.1	17.8	235.9

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	118.7
nxLAmax>70, nuit	23-07 h	14.6

•

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

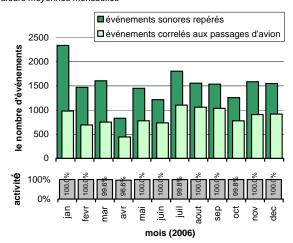
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.7%	99.6%	99.7%
le nombre total des événements sonores repérés	15158	3042	18200
le nombre des événements correlés aux passages d'avion	7897	2290	10187
rapport [%] (taux de corrélation)	52.1%	75.3%	56.0%

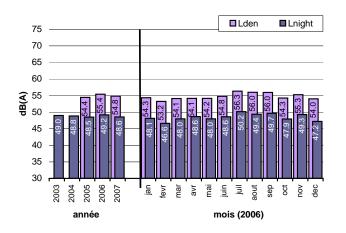
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	49.2
Levening	19-23 h	46.4
Lnight	23-07 h	48.6
Lden		54.8

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	48.8
LAeq,nuit	23-06 h	48.1
LDN		53.8

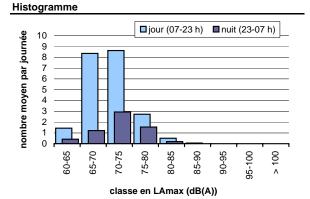

Evolution du nombre des événements sonores

valeurs moyennes mensuelles

Evolution des indicateurs Lden en Lnight

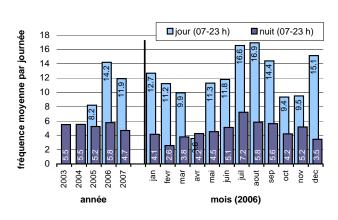
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax


sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax

classe	nombre moyen par journée		
LAmax	jour	journée	
dB(A)	07-23 h	23-07 h	24h
60-65	1.4	0.4	1.8
65-70	8.4	1.2	9.6
70-75	8.6	2.9	11.6
75-80	2.7	1.5	4.3
80-85	0.5	0.2	0.7
85-90	0.1	0.0	0.1
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	21.7	6.3	28.0


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	11.9
nxLAmax>70, nuit	23-07 h	4.7

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

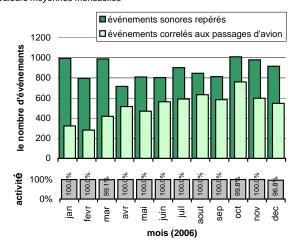
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.6%	99.6%	99.6%
le nombre total des événements sonores repérés	8728	1839	10567
le nombre des événements correlés aux passages d'avion	5012	1263	6275
rapport [%] (taux de corrélation)	57.4%	68.7%	59.4%

Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	45.7
Levening	19-23 h	42.1
Lnight	23-07 h	42.5
Lden		49.4

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	45.1
LAeq,nuit	23-06 h	41.9
LDN		48.3


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

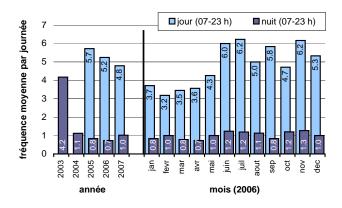
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

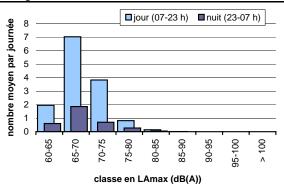
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour nuit journé		
dB(A)	07-23 h	23-07 h	24h
60-65	2.0	0.6	2.6
65-70	7.0	1.9	8.9
70-75	3.8	0.7	4.5
75-80	0.8	0.3	1.1
80-85	0.1	0.0	0.2
85-90	0.0	0.0	0.0
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	13.8	3.5	17.3

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	4.8
nxLAmax>70, nuit	23-07 h	1.0

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

Surveillance du bruit - Brussels Airport Rapport annuel 2007

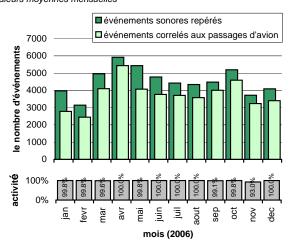
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.2%	99.3%	99.2%
le nombre total des événements sonores repérés	49209	5232	54441
le nombre des événements correlés aux passages d'avion	40915	4206	45121
rapport [%] (taux de corrélation)	83.1%	80.4%	82.9%

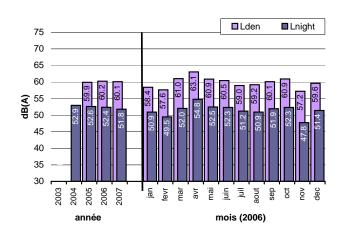
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	57.3
Levening	19-23 h	56.8
Lnight	23-07 h	51.8
Lden		60.1

tranches horaires d'après des critères opérationnels

•		•
LAeq,jour	06-23 h	57.1
LAeq,nuit	23-06 h	51.2
LDN		58.7


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

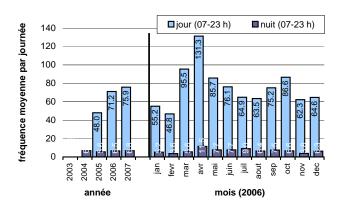
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

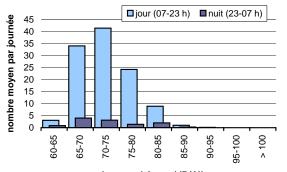
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée			
LAmax	jour nuit journée			
dB(A)	07-23 h	23-07 h	24h	
60-65	3.1	0.9	3.9	
65-70	34.1	4.0	38.0	
70-75	41.5	3.1	44.6	
75-80	24.3	1.4	25.6	
80-85	8.9	2.0	10.9	
85-90	1.0	0.3	1.3	
90-95	0.2	0.0	0.2	
95-100	0.0	0.0	0.0	
> 100	0.0	0.0	0.0	
Totaal	113.0	11.6	124.6	

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	75.9
nxLAmax>70, nuit	23-07 h	6.8

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

classe en LAmax (dB(A))

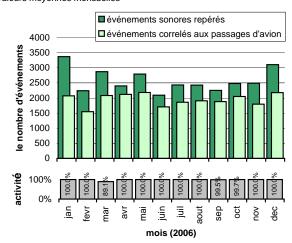
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.0%	99.0%	99.0%
le nombre total des événements sonores repérés	26087	4872	30959
le nombre des événements correlés aux passages d'avion	19514	3864	23378
rapport [%] (taux de corrélation)	74.8%	79.3%	75.5%

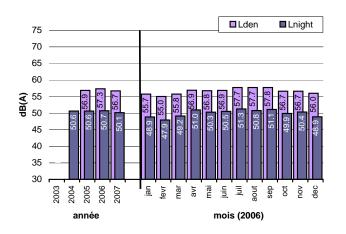
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	52.0
Levening	19-23 h	49.6
Lnight	23-07 h	50.1
Lden		56.7

tranches horaires d'après des critères opérationnels

maneries meranes a apres assertines				
LAeq,jour	06-23 h	51.7		
LAeq,nuit	23-06 h	49.4		
LDN		55.5		


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

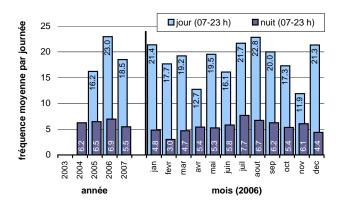
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

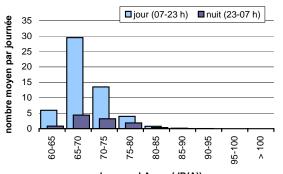
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée			
LAmax	jour nuit journée			
dB(A)	07-23 h	23-07 h	24h	
60-65	6.0	0.8	6.8	
65-70	29.5	4.4	33.9	
70-75	13.5	3.2	16.7	
75-80	4.0	1.8	5.8	
80-85	0.8	0.4	1.2	
85-90	0.2	0.0	0.2	
90-95	0.0	0.0	0.0	
95-100	0.0	0.0	0.0	
> 100	0.0	0.0	0.0	
Totaal	54.0	10.7	64.7	

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	18.5
nxLAmax>70, nuit	23-07 h	5.5

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

classe en LAmax (dB(A))

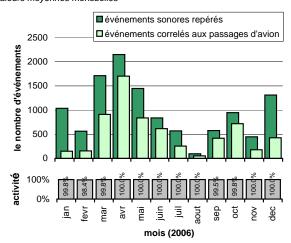
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2007 [%]	99.7%	99.8%	99.8%
le nombre total des événements sonores repérés	9739	1957	11696
le nombre des événements correlés aux passages d'avion	5414	1008	6422
rapport [%] (taux de corrélation)	55.6%	51.5%	54.9%

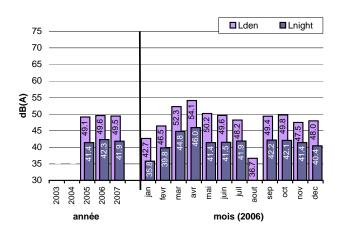
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	46.4
Levening	19-23 h	44.7
Lnight	23-07 h	41.9
Lden		49.5

tranches horaires d'après des critères opérationnels

•		•
LAeq,jour	06-23 h	45.9
LAeq,nuit	23-06 h	41.3
LDN		48.3


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

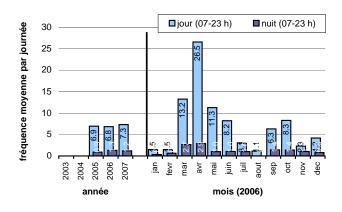
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

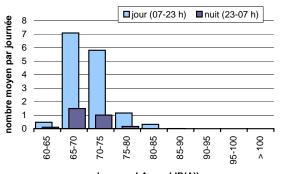
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.5	0.1	0.6
65-70	7.1	1.5	8.6
70-75	5.8	1.0	6.8
75-80	1.2	0.2	1.3
80-85	0.3	0.0	0.3
85-90	0.0	0.0	0.0
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	14.9	2.8	17.6

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	7.3
nxLAmax>70, nuit	23-07 h	1.2

Evolution de la fréquence de dépassement nxLAmax>70

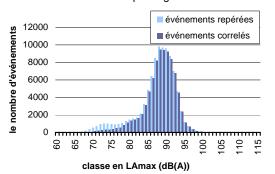
valeurs moyennes mensuelles et annuelles

Histogramme

classe en LAmax (dB(A))

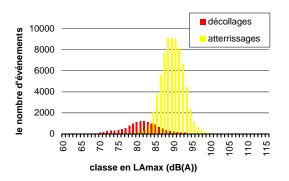
Surveillance du bruit - Brussels Airport Rapport annuel 2007

Surveillance du bruit – Brussels Airport


Rapport annuel 2007

Annexe D

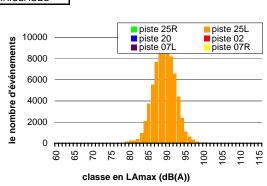
KORTENBERG NMT


Distribution des événements sonores

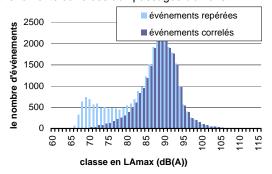
rapport des événements repérées et des événements correlées aux passages d'avions



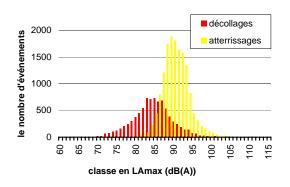
Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

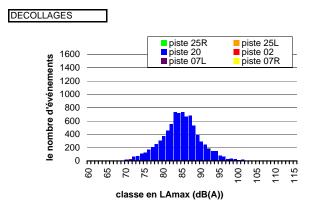
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

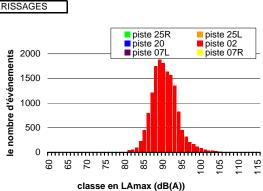

ATTERRISSAGES

NMT NOSSEGEM



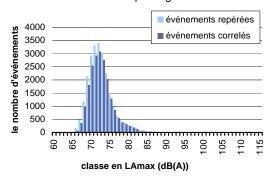
rapport des événements repérées et des événements correlées aux passages d'avions



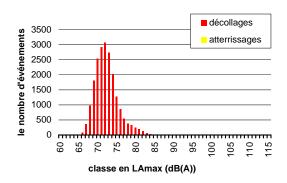

Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

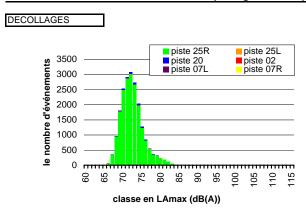
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



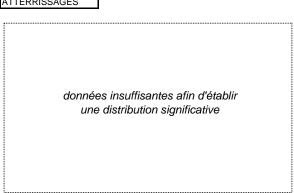
NMT 6 EVERE

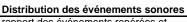

Distribution des événements sonores

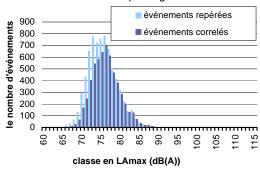
rapport des événements repérées et des événements correlées aux passages d'avions



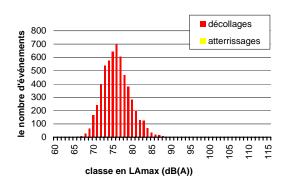
Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

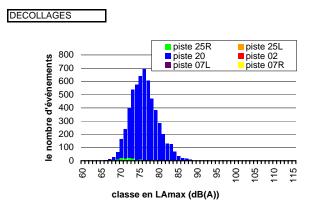

Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé


ATTERRISSAGES

NMT 7 STERREBEEK



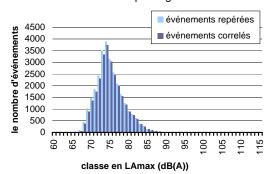
rapport des événements repérées et des événements correlées aux passages d'avions



Distribution des événements correlés aux passages d'avion

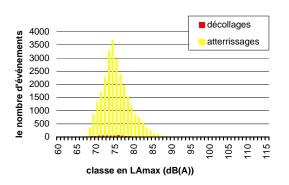
distribution par mouvement (décollage/atterrissage)

Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

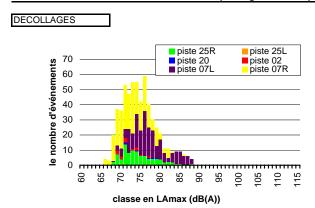


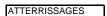
ATTERRISSAGES

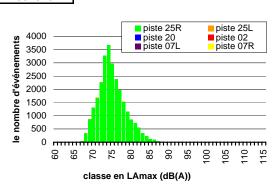
NMT 8 KAMPENHOUT


Distribution des événements sonores

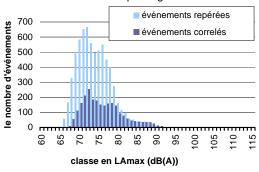
rapport des événements repérées et des événements correlées aux passages d'avions



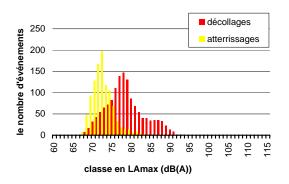

Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

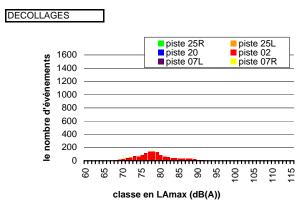
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

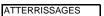


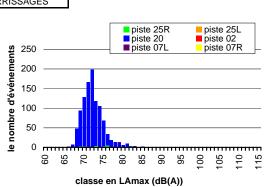
NMT 9 PERK


Distribution des événements sonores

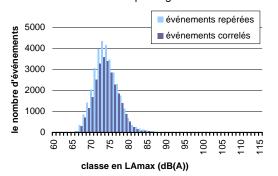
rapport des événements repérées et des événements correlées aux passages d'avions



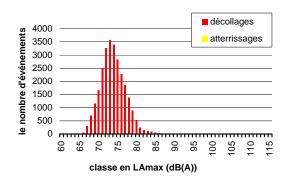

Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

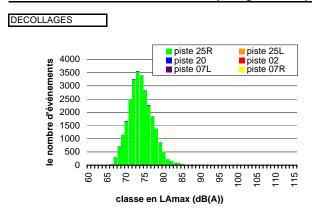
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



NMT 10 N.O. HEEMBEEK


Distribution des événements sonores

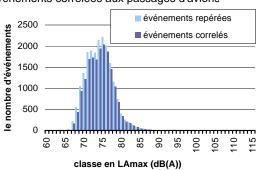
rapport des événements repérées et des événements correlées aux passages d'avions



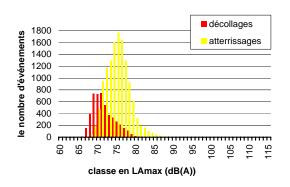
Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

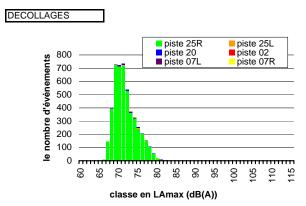
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

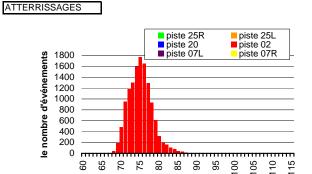

ATTERRISSAGES

NMT 11 WOLUWE-ST. PIERRE


Distribution des événements sonores

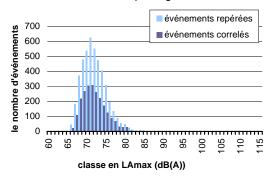
rapport des événements repérées et des événements correlées aux passages d'avions



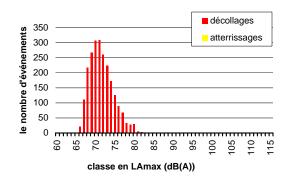

Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

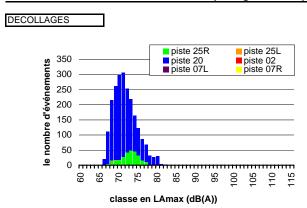
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



NMT 12 DUISBURG


Distribution des événements sonores

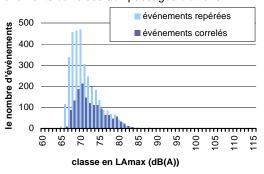
rapport des événements repérées et des événements correlées aux passages d'avions



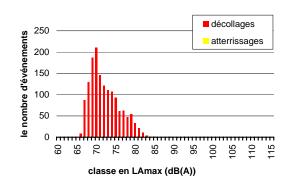
Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

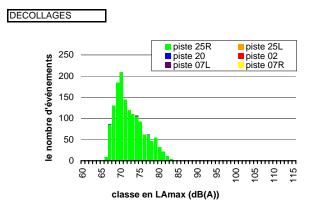
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé


ATTERRISSAGES

NMT 13 GRIMBERGEN


Distribution des événements sonores

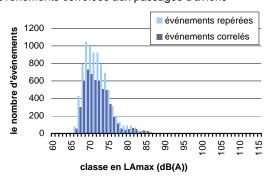
rapport des événements repérées et des événements correlées aux passages d'avions



Distribution des événements correlés aux passages d'avion

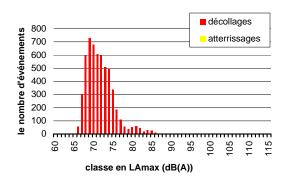
distribution par mouvement (décollage/atterrissage)

Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

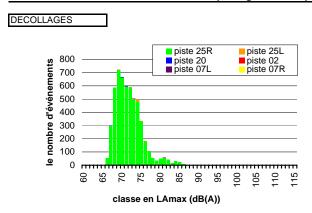


ATTERRISSAGES

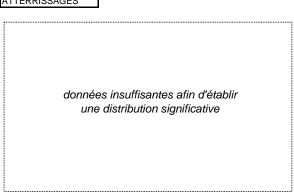
NMT 14 WEMMEL


Distribution des événements sonores

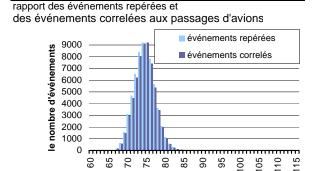
rapport des événements repérées et des événements correlées aux passages d'avions



Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

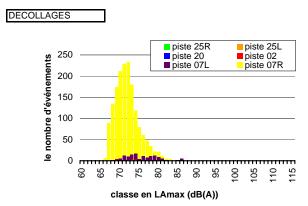
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

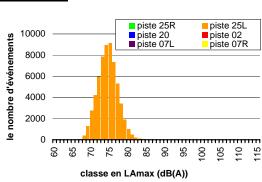


ATTERRISSAGES

NMT 16 VELTEM

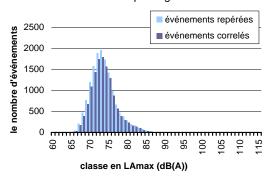
Distribution des événements sonores


classe en LAmax (dB(A))

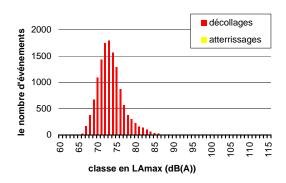

Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

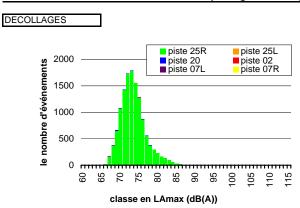
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



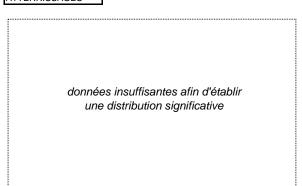
NMT 19 VILVOORDE


Distribution des événements sonores

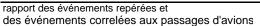
rapport des événements repérées et des événements correlées aux passages d'avions

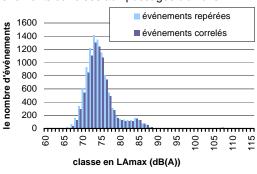


Distribution des événements correlés aux passages d'avion

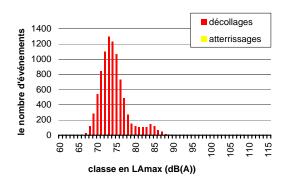

distribution par mouvement (décollage/atterrissage)

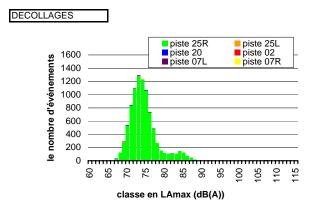
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé




ATTERRISSAGES

NMT 20 MACHELEN

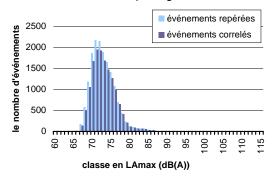

Distribution des événements sonores



Distribution des événements correlés aux passages d'avion

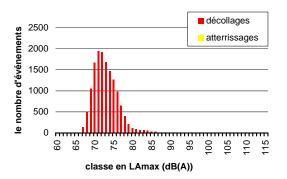
distribution par mouvement (décollage/atterrissage)

Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

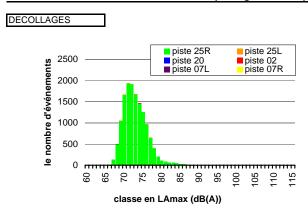


ATTERRISSAGES

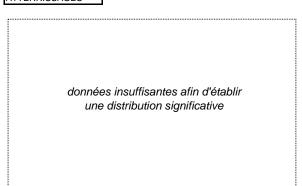
NMT 21 STROMBEEK-BEVER


Distribution des événements sonores

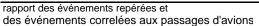
rapport des événements repérées et des événements correlées aux passages d'avions

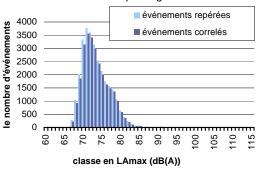


Distribution des événements correlés aux passages d'avion

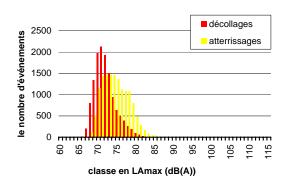

distribution par mouvement (décollage/atterrissage)

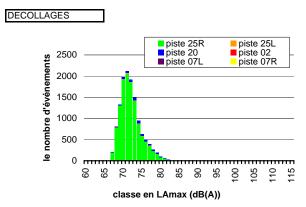
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



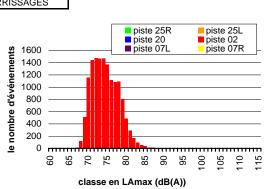

ATTERRISSAGES

NMT 24 KRAAINEM

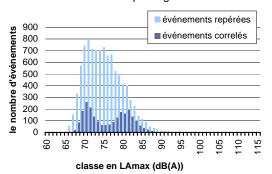

Distribution des événements sonores



Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

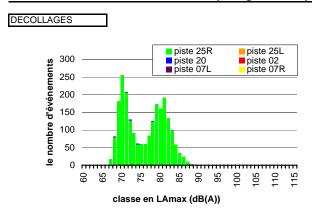
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



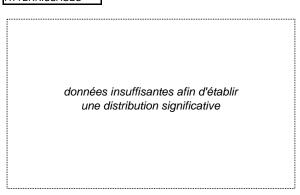
NMT 26 BRUXELLES

Distribution des événements sonores

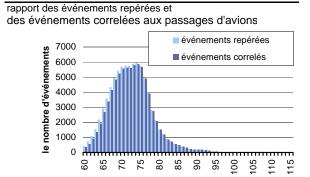
rapport des événements repérées et des événements correlées aux passages d'avions



Distribution des événements correlés aux passages d'avion

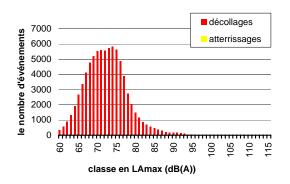

distribution par mouvement (décollage/atterrissage)

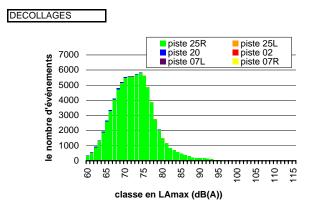
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



ATTERRISSAGES

NMT 30 HAREN

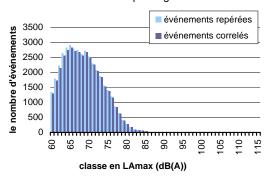

Distribution des événements sonores


classe en LAmax (dB(A))

Distribution des événements correlés aux passages d'avion

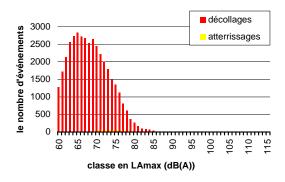
distribution par mouvement (décollage/atterrissage)

Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

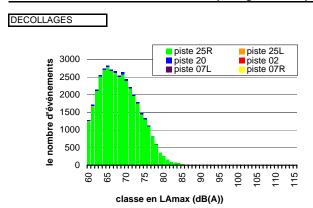


ATTERRISSAGES

NMT 31 EVERE


Distribution des événements sonores

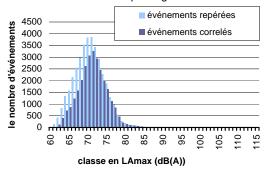
rapport des événements repérées et des événements correlées aux passages d'avions



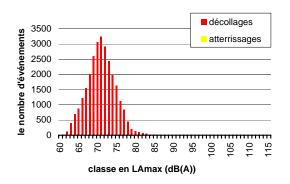
Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

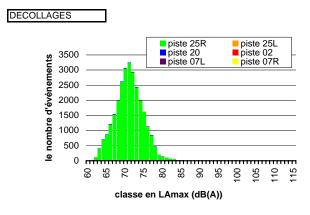
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

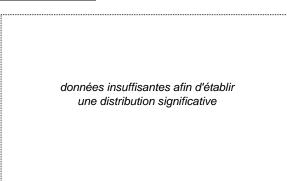

ATTERRISSAGES

NMT 40 KONINGSLO


Distribution des événements sonores

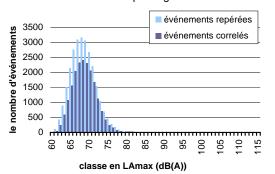
rapport des événements repérées et des événements correlées aux passages d'avions



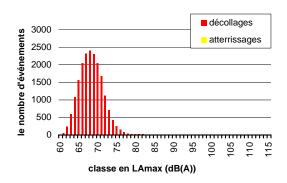

Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

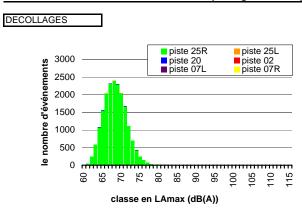
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



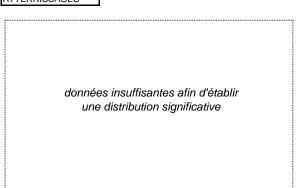
NMT 41 GRIMBERGEN


Distribution des événements sonores

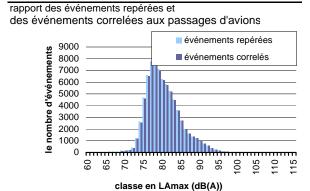
rapport des événements repérées et des événements correlées aux passages d'avions



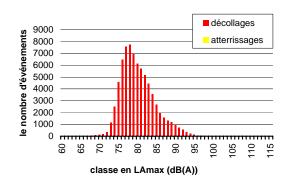
Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

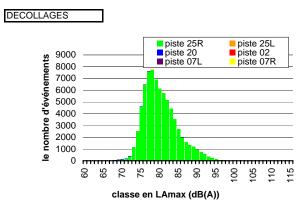
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



ATTERRISSAGES


NMT 42 DIEGEM

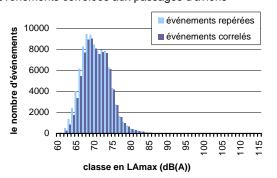
Distribution des événements sonores



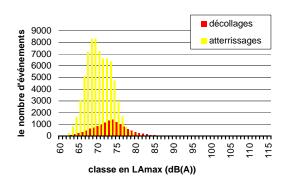
Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

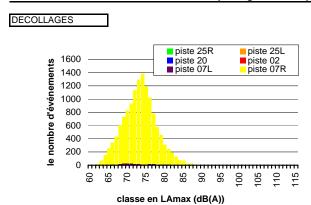
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



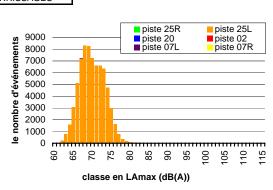
NMT 43 ERPS-KWERPS


Distribution des événements sonores

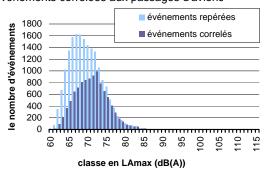
rapport des événements repérées et des événements correlées aux passages d'avions



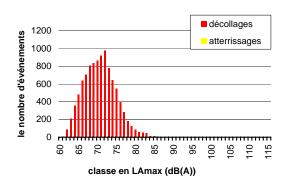
Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

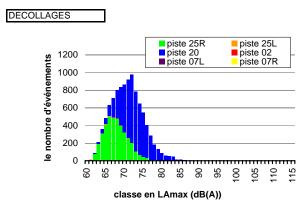
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé


ATTERRISSAGES

NMT 44 TERVUREN


Distribution des événements sonores

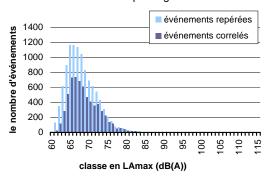
rapport des événements repérées et des événements correlées aux passages d'avions



Distribution des événements correlés aux passages d'avion

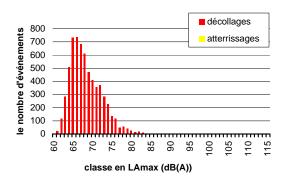
distribution par mouvement (décollage/atterrissage)

Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

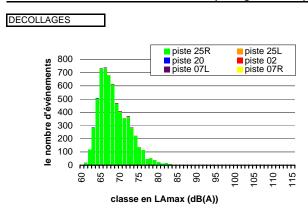


ATTERRISSAGES

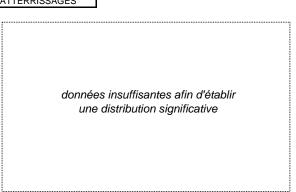
MEISE **NMT**


Distribution des événements sonores

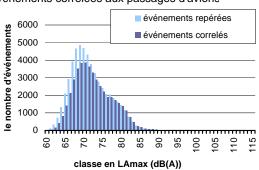
rapport des événements repérées et des événements correlées aux passages d'avions



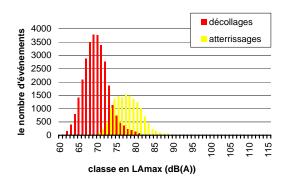
Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

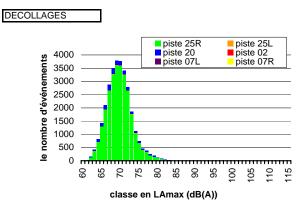
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

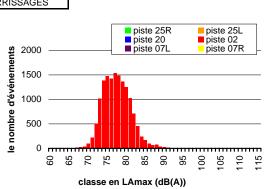

ATTERRISSAGES

NMT 46 WEZEMBEEK-OPPEM


Distribution des événements sonores

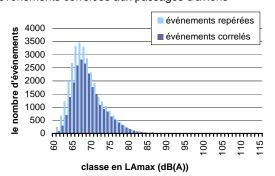
rapport des événements repérées et des événements correlées aux passages d'avions



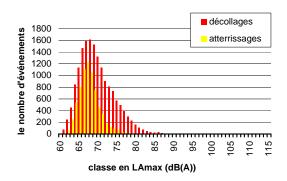

Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

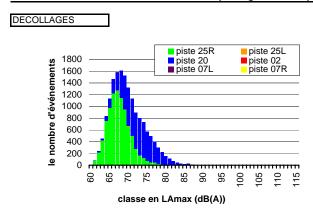
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



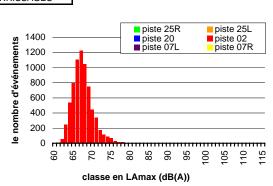
NMT 47 WEZEMBEEK-OPPEM


Distribution des événements sonores

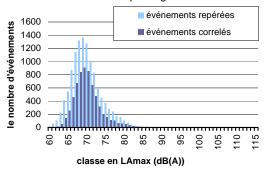
rapport des événements repérées et des événements correlées aux passages d'avions



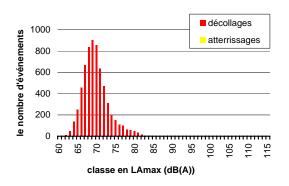
Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

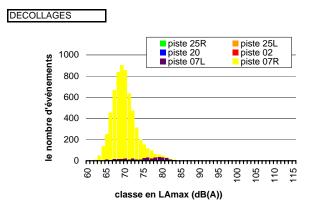
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé


ATTERRISSAGES

NMT 48 BERTEM


Distribution des événements sonores

rapport des événements repérées et des événements correlées aux passages d'avions



Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

ATTERRISSAGES

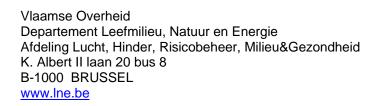
COLOPHON

Ce rapport etait réalisé grâce à la collaboration de:

The Brussels Airport Company n.v./s.a. Luchthaven Brussel Nationaal B-1930 ZAVENTEM www.brusselsairport.be

FOD Mobiliteit en Vervoer:

Direction générale Transport Aérien CCN Vooruitgangstraat 80/5 **B-1030 BRUXELLES** www.mobilit.fgov.be


Ombudsdienst voor de luchthaven Brussel-Nationaal Raketstraat 90 B-1130 BRUSSEL www.airportmediation.be

Belgocontrol Tervuursesteenweg 303 **B-1820 STEENOKKERZEEL** www.belgocontrol.be

Gulledelle 100 **B-1200 BRUXELLES**

